Heat shock element architecture is an important determinant in the temperature and transactivation domain requirements for heat shock transcription factor

被引:97
作者
Santoro, N [1 ]
Johansson, N [1 ]
Thiele, DJ [1 ]
机构
[1] Univ Michigan, Sch Med, Dept Biol Chem, Ann Arbor, MI 48109 USA
关键词
D O I
10.1128/MCB.18.11.6340
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The baker's yeast Saccharomyces cerevisiae possesses a single gene encoding heat shock transcription factor (HSF), which is required for the activation of genes that participate in stress protection as well as normal growth and viability. Yeast HSF (yHSF) contains two distinct transcriptional activation regions located at the amino and carboxyl termini, Activation of the yeast metallothionein gene, CUP1, depends on a nonconsensus heat shock element (HSF), occurs at higher temperatures than other heat shock-responsive genes, and is highly dependent on the carboxyl-terminal transactivation domain (CTA) of yHSF, The results described here show that the noncanonical (or gapped) spacing of GAA units in the CUP1 HSE (HSE1) functions to limit the magnitude of CUP1 transcriptional activation in response to heat and oxidative stress. The spacing in HSE1 modulates the dependence for transcriptional activation by both stresses on the yHSF CTA. Furthermore, a previously uncharacterized HSF in the CUP1 promoter, HSE2, modulates the magnitude of the transcriptional activation of CUP1, via HSE1, in response to stress. In vitro DNase I footprinting experiments suggest that the occupation of HSE2 by yHSF strongly influences the manner in which yHSF occupies HSE1. Limited proteolysis assays show that HSF adopts a distinct protease-sensitive conformation when bound to the CUP1 HSE1, providing evidence that the HSE influences DNA-bound HSF conformation. Together, these results suggest that CUP1 regulation is distinct from that of other classic heat shock genes through the interaction of yHSF with two nonconsensus HSEs, Consistent with this view, we have identified other gene targets of yHSF containing HSEs with sequence and spacing features similar to those of CUP1 HSE1 and show a correlation between the spacing of the GAA units and the relative dependence on the yHSF CTA.
引用
收藏
页码:6340 / 6352
页数:13
相关论文
共 74 条
[1]   A METHOD FOR GENE DISRUPTION THAT ALLOWS REPEATED USE OF URA3 SELECTION IN THE CONSTRUCTION OF MULTIPLY DISRUPTED YEAST STRAINS [J].
ALANI, E ;
CAO, L ;
KLECKNER, N .
GENETICS, 1987, 116 (04) :541-545
[2]   KEY FEATURES OF HEAT-SHOCK REGULATORY ELEMENTS [J].
AMIN, J ;
ANANTHAN, J ;
VOELLMY, R .
MOLECULAR AND CELLULAR BIOLOGY, 1988, 8 (09) :3761-3769
[3]  
Ausubel F. M., 1994, CURRENT PROTOCOLS MO
[4]   INTERACTIONS BETWEEN DNA-BOUND TRIMERS OF THE YEAST HEAT-SHOCK FACTOR [J].
BONNER, JJ ;
BALLOU, C ;
FACKENTHAL, DL .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (01) :501-508
[5]   TEMPERATURE-DEPENDENT REGULATION OF A HETEROLOGOUS TRANSCRIPTIONAL ACTIVATION DOMAIN FUSED TO YEAST HEAT-SHOCK TRANSCRIPTION FACTOR [J].
BONNER, JJ ;
HEYWARD, S ;
FACKENTHAL, DL .
MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (03) :1021-1030
[6]  
BOORSTEIN WR, 1990, J BIOL CHEM, V265, P18912
[7]   TRANSCRIPTIONAL REGULATION OF SSA3, AN HSP70 GENE FROM SACCHAROMYCES-CEREVISIAE [J].
BOORSTEIN, WR ;
CRAIG, EA .
MOLECULAR AND CELLULAR BIOLOGY, 1990, 10 (06) :3262-3267
[8]   HSP82 IS AN ESSENTIAL PROTEIN THAT IS REQUIRED IN HIGHER CONCENTRATIONS FOR GROWTH OF CELLS AT HIGHER TEMPERATURES [J].
BORKOVICH, KA ;
FARRELLY, FW ;
FINKELSTEIN, DB ;
TAULIEN, J ;
LINDQUIST, S .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (09) :3919-3930
[9]   SKN7, A YEAST MULTICOPY SUPPRESSOR OF A MUTATION AFFECTING CELL-WALL BETA-GLUCAN ASSEMBLY, ENCODES A PRODUCT WITH DOMAINS HOMOLOGOUS TO PROKARYOTIC 2-COMPONENT REGULATORS AND TO HEAT-SHOCK TRANSCRIPTION FACTORS [J].
BROWN, JL ;
NORTH, S ;
BUSSEY, H .
JOURNAL OF BACTERIOLOGY, 1993, 175 (21) :6908-6915
[10]   YEAST SKN7P FUNCTIONS IN A EUKARYOTIC 2-COMPONENT REGULATORY PATHWAY [J].
BROWN, JL ;
BUSSEY, H ;
STEWART, RC .
EMBO JOURNAL, 1994, 13 (21) :5186-5194