Carbonaceous aerosols and pollutants over Delhi urban environment: Temporal evolution, source apportionment and radiative forcing

被引:151
作者
Bisht, D. S. [1 ]
Dumka, U. C. [2 ]
Kaskaoutis, D. G. [3 ]
Pipal, A. S. [4 ]
Srivastava, A. K. [1 ]
Soni, V. K. [5 ]
Attri, S. D. [5 ]
Sateesh, M. [5 ]
Tiwari, S. [1 ]
机构
[1] Indian Inst Trop Meteorol, New Delhi, India
[2] Aryabhatta Res Inst Observat Sci, Naini Tal, India
[3] Shiv Nadar Univ, Sch Nat Sci, Tehsil Dadri, India
[4] Savitribai Phule Pune Univ, Dept Chem, Pune, Maharashtra, India
[5] Indian Meteorol Dept, New Delhi, India
关键词
PM2.5; Carbonaceous aerosols; Inorganic ions; Agricultural burning; Radiative impact; Delhi; INDO-GANGETIC PLAIN; BIOMASS BURNING EMISSIONS; FINE PARTICULATE MATTER; SOLUBLE ORGANIC-CARBON; BLACK CARBON; OPTICAL-PROPERTIES; ELEMENTAL CARBON; CHEMICAL-COMPOSITION; MASS CONCENTRATIONS; TERPENE OZONOLYSIS;
D O I
10.1016/j.scitotenv.2015.03.083
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Particulate matter (PM2.5) samples were collected over Delhi, India during January to December 2012 and analysed for carbonaceous aerosols and inorganic ions (SO42 -and NO3-) in order to examine variations in atmospheric chemistry, combustion sources and influence of long-range transport. The PM2.5 samples are measured (offline) via medium volume air samplers and analysed gravimetrically for carbonaceous (organic carbon, OC; elemental carbon, EC) aerosols and inorganic ions (SO42 -and NO3-). Furthermore, continuous (online) measurements of PM2.5 (via Beta-attenuation analyser), black carbon (BC) mass concentration (via Magee scientific Aethalometer) and carbon monoxide (via CO-analyser) are carried out. PM2.5 (online) range from 18.2 to 500.6 mu gm(-3) (annual mean of 124.6 +/- 87.9 mu gm(-3)) exhibiting higher night-time (129.4 mu gm(-3)) than daytime (103.8 mu g m(-3)) concentrations. The online concentrations are 38% and 28% lower than the offline during night and day, respectively. In general, larger night-time concentrations are found for the BC, OC, NO3- and SO42-, which are seasonally dependent with larger differences during late post-monsoon and winter. The high correlation (R-2=0.74) between OC and EC along with the OC/EC of 7.09 (day time) and 4.55 (night-time), suggest significant influence of biomass-burning emissions (burning of wood and agricultural waste) as well as secondary organic aerosol formation during daytime. Concentrated weighted trajectory (CWT) analysis reveals that the potential sources for the carbonaceous aerosols and pollutants are local emissions within the urban environment and transported smoke from agricultural burning in northwest India during post-monsoon. BC radiative forcing estimates result in very high atmospheric heating rates (similar to 1.8-2.0 K day(-1)) due to agricultural burning effects during the 2012 post-monsoon season. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:431 / 445
页数:15
相关论文
共 121 条
[31]   Wintertime aerosol properties during foggy and nonfoggy days over urban center Delhi and their implications for shortwave radiative forcing [J].
Ganguly, Dilip ;
Jayaraman, A. ;
Rajesh, T. A. ;
Gadhavi, H. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D15)
[32]   Climate response of the South Asian monsoon system to anthropogenic aerosols [J].
Ganguly, Dilip ;
Rasch, Philip J. ;
Wang, Hailong ;
Yoon, Jin-Ho .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2012, 117
[33]   Accumulation of aerosols over the Indo-Gangetic plains and southern slopes of the Himalayas: distribution, properties and radiative effects during the 2009 pre-monsoon season [J].
Gautam, R. ;
Hsu, N. C. ;
Tsay, S. C. ;
Lau, K. M. ;
Holben, B. ;
Bell, S. ;
Smirnov, A. ;
Li, C. ;
Hansell, R. ;
Ji, Q. ;
Payra, S. ;
Aryal, D. ;
Kayastha, R. ;
Kim, K. M. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (24) :12841-12863
[34]   Global aerosol model-derived black carbon concentration and single scattering albedo over Indian region and its comparison with ground observations [J].
Goto, D. ;
Takemura, T. ;
Nakajima, T. ;
Badarinath, K. V. S. .
ATMOSPHERIC ENVIRONMENT, 2011, 45 (19) :3277-3285
[35]   Size-resolved aerosol water-soluble ionic compositions in the summer of Beijing: implication of regional secondary formation [J].
Guo, S. ;
Hu, M. ;
Wang, Z. B. ;
Slanina, J. ;
Zhao, Y. L. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (03) :947-959
[36]   Distribution and origin of carbonaceous aerosol over a rural high-mountain lake area, Northern China and its transport significance [J].
Han, Y. M. ;
Han, Z. W. ;
Cao, J. J. ;
Chow, J. C. ;
Watson, J. G. ;
An, Z. S. ;
Liu, S. X. ;
Zhang, R. J. .
ATMOSPHERIC ENVIRONMENT, 2008, 42 (10) :2405-2414
[37]   Efficacy of climate forcings [J].
Hansen, J ;
Sato, M ;
Ruedy, R ;
Nazarenko, L ;
Lacis, A ;
Schmidt, GA ;
Russell, G ;
Aleinov, I ;
Bauer, M ;
Bauer, S ;
Bell, N ;
Cairns, B ;
Canuto, V ;
Chandler, M ;
Cheng, Y ;
Del Genio, A ;
Faluvegi, G ;
Fleming, E ;
Friend, A ;
Hall, T ;
Jackman, C ;
Kelley, M ;
Kiang, N ;
Koch, D ;
Lean, J ;
Lerner, J ;
Lo, K ;
Menon, S ;
Miller, R ;
Minnis, P ;
Novakov, T ;
Oinas, V ;
Perlwitz, J ;
Perlwitz, J ;
Rind, D ;
Romanou, A ;
Shindell, D ;
Stone, P ;
Sun, S ;
Tausnev, N ;
Thresher, D ;
Wielicki, B ;
Wong, T ;
Yao, M ;
Zhang, S .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D18) :1-45
[38]   The characteristics of PM2.5 in Beijing, China [J].
He, KB ;
Yang, FM ;
Ma, YL ;
Zhang, Q ;
Yao, XH ;
Chan, CK ;
Cadle, S ;
Chan, T ;
Mulawa, P .
ATMOSPHERIC ENVIRONMENT, 2001, 35 (29) :4959-4970
[39]  
Hess M, 1998, B AM METEOROL SOC, V79, P831, DOI 10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO
[40]  
2