Wavelet reconstruction of nonlinear dynamics

被引:22
作者
Allingham, D [1 ]
West, M [1 ]
Mees, AI [1 ]
机构
[1] Univ Western Australia, Dept Math, Ctr Appl Dynam & Optimizat, Nedlands, WA 6907, Australia
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1998年 / 8卷 / 11期
关键词
D O I
10.1142/S0218127498001789
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the reconstruction of embedded time-series from chaotic dynamical systems using wavelets. The standard wavelet transforms are not applicable because of the embedding, and we use a basis pursuit method which on its own does not perform very well. When this is combined with a continuous optimizer, however, we obtain very good models. We discuss the success of this method and apply it to some data from a vibrating string experiment.
引用
收藏
页码:2191 / 2201
页数:11
相关论文
共 15 条
[1]   Predicting chaotic time series with wavelet networks [J].
1600, Elsevier Science B.V., Amsterdam, Netherlands (85) :1-2
[2]  
CHEN SS, 1996, UNPUB ATOMIC DECOMPO
[3]  
DAUBECHIES I, 1992, LECT WAVELETS
[4]  
DONOHO DL, 1992, UNCONDITIONAL BASES
[5]  
GLENDENNING PA, 1983, J STAT PHYS, V35, P645
[6]  
GLENDINNING P, 1983, 16 INT C THEOR APPL
[7]   Modeling chaotic motions of a string from experimental data [J].
Judd, K ;
Mees, A .
PHYSICA D, 1996, 92 (3-4) :221-236
[8]   ON SELECTING MODELS FOR NONLINEAR TIME-SERIES [J].
JUDD, K ;
MEES, A .
PHYSICA D, 1995, 82 (04) :426-444
[9]   MATCHING PURSUITS WITH TIME-FREQUENCY DICTIONARIES [J].
MALLAT, SG ;
ZHANG, ZF .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1993, 41 (12) :3397-3415
[10]   AN ALGORITHM FOR LEAST-SQUARES ESTIMATION OF NONLINEAR PARAMETERS [J].
MARQUARDT, DW .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1963, 11 (02) :431-441