Modeling chaotic motions of a string from experimental data

被引:23
作者
Judd, K
Mees, A
机构
[1] Department of Mathematics, University of Western Australia, Nedlands
来源
PHYSICA D | 1996年 / 92卷 / 3-4期
关键词
D O I
10.1016/0167-2789(95)00287-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Experimental measurements of nonlinear vibrations of a string are analyzed using new techniques of nonlinear modeling. Previous theoretical and numerical work suggested that the motions of a string can be chaotic and a Shil'nikov mechanism is responsible. We show that the experimental data is consistent with a Shil'nikov mechanism. We also reveal a period doubling cascade with a period three window which is not immediately observable because there is sufficient noise, probably of a dynamical origin, to mask the period-doubling bifurcation and the period three window.
引用
收藏
页码:221 / 236
页数:16
相关论文
共 21 条
[1]  
ABARBANEL HDI, 1992, LOCAL FALSE NEAREST
[2]  
ABARBANEL HDI, 1993, ANAL OBSERVED CHAOTI, V65
[3]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[4]  
[Anonymous], 1981, LECT NOTES MATH
[5]   ON THE AMPLITUDE DYNAMICS AND CRISIS IN RESONANT MOTION OF STRETCHED STRINGS [J].
BAJAJ, AK ;
JOHNSON, JM .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1992, 338 (1649) :1-41
[6]  
BROWN R, 1992, ORTHONORMAL POLYNOMI
[7]   Optimal shadowing and noise reduction [J].
Farmer, J.D. ;
Sidorowich, J.J. .
Physica D: Nonlinear Phenomena, 1991, 47 (03) :373-392
[8]  
GLENDENNING PA, 1983, J STAT PHYS, V35, P645
[9]  
GLENDINNING P, 1984, 16 INT C THEOR APPL
[10]   GRID IMAGING FOR A TWO-DIMENSIONAL MAP [J].
Judd, K. ;
Mees, A. I. ;
Alhara, K. ;
Toyoda, M. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1991, 1 (01) :197-210