Hamiltonian formulation of systems with linear velocities within Riemann-Liouville fractional derivatives

被引:153
作者
Muslih, SI
Baleanu, D [1 ]
机构
[1] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
[2] Al Azhar Univ, Dept Phys, Gaza, Palestine, Israel
[3] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy
关键词
fractional derivative; Hamiltonian system; nonconservative systems;
D O I
10.1016/j.jmaa.2004.09.043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The link between the treatments of constrained systems with fractional derivatives by using both Hamiltonian and Lagrangian formulations is studied. It is shown that both treatments for systems with linear velocities are equivalent. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:599 / 606
页数:8
相关论文
共 27 条
[1]  
AGRAQWAL OP, 2004, IN PRESS T ASME
[2]   A Bliss-type multiplier rule for constrained variational problems with time delay [J].
Agrawal, OP ;
Gregory, J ;
PericakSpector, K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 210 (02) :702-711
[3]   A new Lagrangian and a new Lagrange equation of motion for fractionally damped systems [J].
Agrawal, OP .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2001, 68 (02) :339-341
[4]   Formulation of Euler-Lagrange equations for fractional variational problems [J].
Agrawal, OP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) :368-379
[5]  
[Anonymous], APPL FRACTION CALCUL
[6]   Lagrangians with linear velocities within Riemann-Liouville fractional derivatives [J].
Baleanu, D ;
Avkar, T .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2004, 119 (01) :73-79
[7]  
BALEANU D, 2004, P 1 IFAC WORKSH FRAC, P597
[8]  
Dirac P.A.M., 1964, Lectures on Quantum Mechanics, Belfer Graduate School Monograph Series
[9]  
Gorenflo R., 1997, FRACTAL FRACT, V378, P223, DOI DOI 10.1007/978-3-7091-2664-6_5
[10]  
Hanson A, 1976, CONSTRAINED HAMILTON