Exact stable pulses in asymmetric linearly coupled Ginzburg-Landau equations

被引:68
作者
Atai, J [1 ]
Malomed, BA
机构
[1] Univ Sydney, Dept Elect Engn, Sydney, NSW 2006, Australia
[2] Tel Aviv Univ, Fac Engn, Dept Interdisciplinary Studies, IL-69978 Tel Aviv, Israel
关键词
D O I
10.1016/S0375-9601(98)00505-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We put forward the first physical model based on coupled Ginzburg-Landau equations that supports exact stable pulse solutions. The model describes a doped twin-core optical fiber with dispersive losses, dispersion, and cubic nonlinearity in one component, and pure losses in the other. The exact stable pulses are found for the cases of the anomalous, normal, and zero dispersion. Necessary conditions for stability of the pulses are obtained analytically, and a full stability analysis is performed numerically. We find nontrivial stability borders on the model's phase planes that do not follow from elementary theorems of the bifurcation theory. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:412 / 422
页数:11
相关论文
共 25 条
[11]  
JENSEN SM, 1982, IEEE J QUANTUM ELECT, V18, P1580, DOI 10.1109/TMTT.1982.1131291
[12]  
MAIER AA, 1982, KVANTOVAYA ELEKTRON+, V9, P2296
[13]   EVOLUTION OF NONSOLITON AND QUASI-CLASSICAL WAVETRAINS IN NONLINEAR SCHRODINGER AND KORTEWEG-DEVRIES EQUATIONS WITH DISSIPATIVE PERTURBATIONS [J].
MALOMED, BA .
PHYSICA D, 1987, 29 (1-2) :155-172
[14]   Stability and interactions of pulses in simplified Ginzburg-Landau equations [J].
Malomed, BA ;
Golles, M ;
Uzunov, IM ;
Lederer, F .
PHYSICA SCRIPTA, 1997, 55 (01) :73-79
[15]   Stable solitons in two-component active systems [J].
Malomed, BA ;
Winful, HG .
PHYSICAL REVIEW E, 1996, 53 (05) :5365-5368
[16]   KINKS AND SOLITONS IN THE GENERALIZED GINZBURG-LANDAU EQUATION [J].
MALOMED, BA ;
NEPOMNYASHCHY, AA .
PHYSICAL REVIEW A, 1990, 42 (10) :6009-6014
[17]   Symmetric and asymmetric solitons in twin-core nonlinear optical fibers [J].
Malomed, BA ;
Skinner, IM ;
Chu, PL ;
Peng, GD .
PHYSICAL REVIEW E, 1996, 53 (04) :4084-4091
[18]   EXACT-SOLUTIONS OF THE ONE-DIMENSIONAL QUINTIC COMPLEX GINZBURG-LANDAU EQUATION [J].
MARCQ, P ;
CHATE, H ;
CONTE, R .
PHYSICA D, 1994, 73 (04) :305-317
[19]   SELF-TRAPPING OF TRAVELING-WAVE PULSES IN BINARY MIXTURE CONVECTION [J].
RIECKE, H .
PHYSICAL REVIEW LETTERS, 1992, 68 (03) :301-304
[20]   SOLITON SWITCHING IN NONLINEAR COUPLERS [J].
ROMAGNOLI, M ;
TRILLO, S ;
WABNITZ, S .
OPTICAL AND QUANTUM ELECTRONICS, 1992, 24 (11) :S1237-S1267