Constraining dark energy with X-ray galaxy clusters, supernovae and the cosmic microwave background

被引:110
作者
Rapetti, D
Allen, SW
Weller, J
机构
[1] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England
[2] Univ Barcelona, Dept Astron & Meteorol, E-08028 Barcelona, Spain
[3] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA
[4] NASA, Fermilab Astrophys Grp, Fermi Natl Accelerator Lab, Batavia, IL 60510 USA
[5] UCL, Dept Phys & Astron, London WC1E 6BT, England
关键词
supernovae : general; galaxies : clusters : general; cosmic microwave background; cosmology : observations; cosmology : theory; X-rays : galaxies : clusters;
D O I
10.1111/j.1365-2966.2005.09067.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present new constraints on the evolution of dark energy from an analysis of cosmic microwave background, supernova and X-ray galaxy cluster data. Our analysis employs a minimum of priors and exploits the complementary nature of these data sets. We examine a series of dark energy models with up to three free parameters: the current dark energy equation of state w(0), the early-time equation of state wet, and the scalefactor at transition at. From a combined analysis of all three data sets, assuming a constant equation of state and that the Universe is flat, we measure w(0) = -1.05(-0.12)(+0.10) Including wet as a free parameter and allowing the transition scalefactor to vary over the range 0.5 < alpha(t) < 0.95 where the data sets have discriminating power, we measure w(0) = -1.27(-0.39)(+0.33) and w(et) = -0.66(-0.62)(+0.44). We find no significant evidence for evolution in the dark energy equation-of-state parameter with redshift. Marginal hints of evolution in the supernovae data become less significant when the cluster constraints are also included in the analysis. The complementary nature of the data sets leads to a tight constraint on the mean matter density Omega m and alleviates a number of other parameter degeneracies, including that between the scalar spectral index n(s), the physical baryon density Omega(b)h(2) and the optical depth tau. This complementary nature also allows us to examine models in which we drop the prior on the curvature. For non-flat models with a constant equation of state, we measure w(0) = -1.09(-0.15)(+0.12) and obtain a tight constraint on the current dark energy density Omega(de) = 0.70 +/- 0.03. For dark energy models other than a cosmological constant, energy-momentum conservation requires the inclusion of spatial perturbations in the dark energy component. Our analysis includes such perturbations, assuming a sound speed c(s)(2) = 1 in the dark energy fluid as expected for quintessence scenarios. For our most general dark energy model, not including such perturbations would lead to spurious constraints on wet, which would be tighter than those mentioned above by approximately a factor of 2 with the current data.
引用
收藏
页码:555 / 564
页数:10
相关论文
共 49 条
[21]   Crossing the phantom divide: Dark energy internal degrees of freedom [J].
Hu, W .
PHYSICAL REVIEW D, 2005, 71 (04) :047301-1
[22]   Prospects for probing the dark energy via supernova distance measurements [J].
Huterer, D ;
Turner, MS .
PHYSICAL REVIEW D, 1999, 60 (08)
[23]  
JAIN D, 2004, ASTROPH0409431
[24]   WMAP constraints on low redshift evolution of dark energy [J].
Jassal, HK ;
Bagla, JS ;
Padmanabhan, T .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2005, 356 (01) :L11-L16
[25]   No evidence for dark energy metamorphosis? -: art. no. 007 [J].
Jönsson, J ;
Goobar, A ;
Amanullah, R ;
Bergström, L .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2004, (09) :119-131
[26]   The cosmological baryon density from the deuterium-to-hydrogen ratio in QSO absorption systems: D/H toward Q1243+3047 [J].
Kirkman, D ;
Tytler, D ;
Suzuki, N ;
O'Meara, JM ;
Lubin, D .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2003, 149 (01) :1-28
[27]   New constraints on ΩM, ΩΛ, and w from an independent set of 11 high-redshift supernovae observed with the Hubble Space Telescope [J].
Knop, RA ;
Aldering, G ;
Amanullah, R ;
Astier, P ;
Blanc, G ;
Burns, MS ;
Conley, A ;
Deustua, SE ;
Doi, M ;
Ellis, R ;
Fabbro, S ;
Folatelli, G ;
Fruchter, AS ;
Garavini, G ;
Garmond, S ;
Garton, K ;
Gibbons, R ;
Goldhaber, G ;
Goobar, A ;
Groom, DE ;
Hardin, D ;
Hook, I ;
Howell, DA ;
Kim, AG ;
Lee, BC ;
Lidman, C ;
Mendez, J ;
Nobili, S ;
Nugent, PE ;
Pain, R ;
Panagia, N ;
Pennypacker, CR ;
Perlmutter, S ;
Quimby, R ;
Raux, J ;
Regnault, N ;
Ruiz-Lapuente, P ;
Sainton, G ;
Schaefer, B ;
Schahmaneche, K ;
Smith, E ;
Spadafora, AL ;
Stanishev, V ;
Sullivan, M ;
Walton, NA ;
Wang, L ;
Wood-Vasey, WM ;
Yasuda, N .
ASTROPHYSICAL JOURNAL, 2003, 598 (01) :102-137
[28]   First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations:: Temperature-polarization correlation [J].
Kogut, A ;
Spergel, DN ;
Barnes, C ;
Bennett, CL ;
Halpern, M ;
Hinshaw, G ;
Jarosik, N ;
Limon, M ;
Meyer, SS ;
Page, L ;
Tucker, GS ;
Wollack, E ;
Wright, EL .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2003, 148 (01) :161-173
[29]   High-resolution observations of the cosmic microwave background power spectrum with ACBAR [J].
Kuo, CL ;
Ade, PAR ;
Bock, JJ ;
Cantalupo, C ;
Daub, MD ;
Goldstein, J ;
Holzapfel, WL ;
Lange, AE ;
Lueker, M ;
Newcomb, M ;
Peterson, JB ;
Ruhl, J ;
Runyan, MC ;
Torbet, E .
ASTROPHYSICAL JOURNAL, 2004, 600 (01) :32-51
[30]   Efficient computation of cosmic microwave background anisotropies in closed Friedmann-Robertson-Walker models [J].
Lewis, A ;
Challinor, A ;
Lasenby, A .
ASTROPHYSICAL JOURNAL, 2000, 538 (02) :473-476