A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry

被引:905
作者
Fan, Meikun [2 ,3 ]
Andrade, Gustavo F. S. [4 ]
Brolo, Alexandre G. [1 ]
机构
[1] Univ Victoria, Dept Chem, Victoria, BC V8W 3V6, Canada
[2] Univ Western Ontario, Dept Mech & Mat Engn, London, ON, Canada
[3] Chengdu Inst Chem Mat, Green Energy & Green Technol R&D Ctr, Chengdu, Peoples R China
[4] Univ Fed Juiz de Fora, Inst Ciencias Exatas, Dept Quim, BR-36036900 Juiz De Fora, Brazil
关键词
Surface-enhanced Raman scattering; SERS; Plasmonics; Sensors; Nanolithography; Analytical spectroscopy; NANOSTRUCTURED OPTICAL-FIBER; SELF-ASSEMBLED MONOLAYER; POLYCYCLIC AROMATIC-HYDROCARBONS; SILVER NANOPARTICLE FILM; PHOTONIC CRYSTAL FIBER; BY-LAYER FILMS; ELECTRON-TRANSFER; SCATTERING SERS; SINGLE-MOLECULE; NANOSPHERE LITHOGRAPHY;
D O I
10.1016/j.aca.2011.03.002
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This work reviews different types of substrates used for surface-enhanced Raman scattering (SERS) that have been developed in the last 10 years. The different techniques of self-assembly to immobilize metallic nanoparticles on solid support are covered. An overview of SERS platforms developed using nanolithography methods, including electron-beam (e-beam) lithography and focused ion beam (FIB) milling are also included, together with several examples of template-based methodologies to generate metallic nano-patterns. The potential of SERS to impact several aspects of analytical chemistry is demonstrated by selected examples of applications in electrochemistry, biosensing, environmental analysis, and remote sensing. This review shows that highly enhancing SERS substrates with a high degree of reliability and reproducibility can now be fabricated at relative low cost, indicating that SERS may finally realize its full potential as a very sensitive tool for routine analytical applications. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:7 / 25
页数:19
相关论文
共 291 条
[1]   Electrochemical SERS at a structured gold surface [J].
Abdelsalam, ME ;
Bartlett, PN ;
Baumberg, JJ ;
Cintra, S ;
Kelf, TA ;
Russell, AE .
ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (07) :740-744
[2]   Fabrication and characterization of a multiwell array SERS chip with biological applications [J].
Abell, J. L. ;
Driskell, J. D. ;
Dluhy, R. A. ;
Tripp, R. A. ;
Zhao, Y. -P. .
BIOSENSORS & BIOELECTRONICS, 2009, 24 (12) :3663-3670
[3]   Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing [J].
Abu Hatab, Nahla A. ;
Oran, Jenny M. ;
Sepaniak, Michael J. .
ACS NANO, 2008, 2 (02) :377-385
[4]   Nanoparticle-containing structures as a substrate for surface-enhanced Raman scattering [J].
Addison, Christopher J. ;
Brolo, Alexandre G. .
LANGMUIR, 2006, 22 (21) :8696-8702
[5]   Tuning Gold Nanoparticle Self-Assembly for Optimum Coherent Anti-Stokes Raman Scattering and Second Harmonic Generation Response [J].
Addison, Christopher J. ;
Konorov, Stanislav O. ;
Brolo, Alexandre G. ;
Blades, Michael W. ;
Turner, Robin F. B. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (09) :3586-3592
[6]   SURFACE-ENHANCED RAMAN-SPECTROMETRY OF ORGANOPHOSPHORUS CHEMICAL-AGENTS [J].
ALAK, AM ;
VO-DINH, T .
ANALYTICAL CHEMISTRY, 1987, 59 (17) :2149-2153
[7]   ANOMALOUSLY INTENSE RAMAN-SPECTRA OF PYRIDINE AT A SILVER ELECTRODE [J].
ALBRECHT, MG ;
CREIGHTON, JA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1977, 99 (15) :5215-5217
[8]   Environmental applications of plasmon assisted Raman scattering [J].
Alvarez-Puebla, R. A. ;
Liz-Marzan, L. M. .
ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (08) :1011-1017
[9]   SERS detection of environmental pollutants in humic acid-gold nanoparticle composite materials [J].
Alvarez-Puebla, Ramon A. ;
dos Santos, David S., Jr. ;
Aroca, Ricardo F. .
ANALYST, 2007, 132 (12) :1210-1214
[10]  
Andrade GFS, 2008, J PHYS CHEM C, V112, P15348, DOI 10.1021/jp8016858