The Bayesian Lasso

被引:1986
作者
Park, Trevor [1 ]
Casella, George [1 ]
机构
[1] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
empirical Bayes; Gibbs sampler; hierarchical model; inverse Gaussian; linear regression; penalized regression; scale mixture of normals;
D O I
10.1198/016214508000000337
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Lasso estimate for linear regression parameters can be interpreted as a Bayesian posterior mode estimate when the regression parameters have independent Laplace (i.e., double-exponential) priors. Gibbs sampling from this posterior is possible using an expanded hierarchy with conjugate normal priors for the regression parameters and independent exponential priors on their variances. A connection with the inverse-Gaussian distribution provides tractable full conditional distributions. The Bayesian Lasso provides interval estimates (Bayesian credible intervals) that can guide variable selection. Moreover, the structure of the hierarchical model provides both Bayesian and likelihood methods for selecting the Lasso parameter. Slight modifications lead to Bayesian versions of other Lasso-related estimation methods, including bridge regression and a robust variant.
引用
收藏
页码:681 / 686
页数:6
相关论文
共 21 条
[1]  
ANDREWS DF, 1974, J ROY STAT SOC B MET, V36, P99
[2]   THE SIMULATION OF GENERALIZED INVERSE GAUSSIAN AND HYPERBOLIC RANDOM-VARIABLES [J].
ATKINSON, AC .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1982, 3 (04) :502-515
[3]   Gene selection using a two-level hierarchical Bayesian model [J].
Bae, K ;
Mallick, BK .
BIOINFORMATICS, 2004, 20 (18) :3423-3430
[4]  
Casella G, 2001, Biostatistics, V2, P485, DOI 10.1093/biostatistics/2.4.485
[5]  
Chhikara R. S., 1989, INVERSE GAUSSIAN DIS
[6]   Least angle regression - Rejoinder [J].
Efron, B ;
Hastie, T ;
Johnstone, I ;
Tibshirani, R .
ANNALS OF STATISTICS, 2004, 32 (02) :494-499
[7]   Variable selection via nonconcave penalized likelihood and its oracle properties [J].
Fan, JQ ;
Li, RZ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1348-1360
[8]   Adaptive sparseness for supervised learning [J].
Figueiredo, MAT .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (09) :1150-1159
[9]   A STATISTICAL VIEW OF SOME CHEMOMETRICS REGRESSION TOOLS [J].
FRANK, IE ;
FRIEDMAN, JH .
TECHNOMETRICS, 1993, 35 (02) :109-135
[10]  
Friedman J, 2001, The elements of statistical learning, V1, DOI DOI 10.1007/978-0-387-21606-5