Models of fractal river basins

被引:42
作者
Cieplak, M [1 ]
Giacometti, A
Maritan, A
Rinaldo, A
Rodriguez-Iturbe, I
Banavar, JR
机构
[1] Polish Acad Sci, PL-02668 Warsaw, Poland
[2] INFM, Unita Venezia, Dipartimento Sci Ambientali, I-30123 Venice, Italy
[3] INFM, I-34014 Grignano Di Trieste, Italy
[4] SISSA, Sch Adv Int Studies, I-34014 Trieste, Italy
[5] Univ Padua, Ist Idraul G Poleni, I-35131 Padua, Italy
[6] Texas A&M Univ, Dept Civil Engn, College Stn, TX 77843 USA
[7] Penn State Univ, Dept Phys, Davy Lab 104, University Pk, PA 16802 USA
[8] Penn State Univ, Ctr Phys Mat, Davy Lab 104, University Pk, PA 16802 USA
关键词
dynamical critical phenomena; growth process; rivers; runoff and stream flow; erosion and sedimentation; aggregation patterns;
D O I
10.1023/A:1023069201470
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Two distinct models for self-similar and self-affine river basins are numerically investigated. They yield fractal aggregation patterns following nontrivial power laws in experimentally relevant distributions. Previous numerical estimates on the critical exponents, when existing, are confirmed and superseded. A physical motivation for both models in the present framework is also discussed.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 39 条
[1]   Sculpting of a fractal river basin [J].
Banavar, JR ;
Colaiori, F ;
Flammini, A ;
Giacometti, A ;
Maritan, A ;
Rinaldo, A .
PHYSICAL REVIEW LETTERS, 1997, 78 (23) :4522-4525
[2]   Invasion percolation and global optimization [J].
Barabasi, AL .
PHYSICAL REVIEW LETTERS, 1996, 76 (20) :3750-3753
[3]   DRAINAGE-BASIN PERIMETERS - A FRACTAL SIGNIFICANCE [J].
BREYER, SP ;
SNOW, RS .
GEOMORPHOLOGY, 1992, 5 (1-2) :143-157
[4]   Randomly pinned landscape evolution [J].
Caldarelli, G ;
Giacometti, A ;
Maritan, A ;
Rodriguez-Iturbe, I ;
Rinaldo, A .
PHYSICAL REVIEW E, 1997, 55 (05) :R4865-R4868
[5]   CAPILLARY DISPLACEMENT AND PERCOLATION IN POROUS-MEDIA [J].
CHANDLER, R ;
KOPLIK, J ;
LERMAN, K ;
WILLEMSEN, JF .
JOURNAL OF FLUID MECHANICS, 1982, 119 (JUN) :249-267
[6]   OPTIMAL PATHS AND DOMAIN-WALLS IN THE STRONG DISORDER LIMIT [J].
CIEPLAK, M ;
MARITAN, A ;
BANAVAR, JR .
PHYSICAL REVIEW LETTERS, 1994, 72 (15) :2320-2324
[7]   Invasion percolation and Eden growth: Geometry and universality [J].
Cieplak, M ;
Maritan, A ;
Banavar, JR .
PHYSICAL REVIEW LETTERS, 1996, 76 (20) :3754-3757
[8]   Analytical and numerical study of optimal channel networks [J].
Colaiori, F ;
Flammini, A ;
Maritan, A ;
Banavar, JR .
PHYSICAL REVIEW E, 1997, 55 (02) :1298-1310
[9]  
Feder J., 1988, FRACTALS
[10]  
Hack JT, 1957, US GEOL SURV PROF B, V294-B, P1