Differentiating between Near- and Non-Cognate Codons in Saccharomyces cerevisiae

被引:48
作者
Plant, Ewan P. [1 ]
Nguyen, Phuc [1 ]
Russ, Jonathan R. [1 ]
Pittman, Yvette R. [2 ]
Nguyen, Thai [3 ]
Quesinberry, Jack T. [4 ]
Kinzy, Terri Goss [2 ]
Dinman, Jonathan D. [1 ]
机构
[1] Univ Maryland, Dept Mol Genet & Cell Biol, College Pk, MD 20742 USA
[2] Univ Med & Dent New Jersey, Robert Wood Johnson Med Sch, Dept Mol Genet Microbiol & Immunol, Piscataway, NJ 08854 USA
[3] Eleanor Roosevelt High Sch, Ctr Sci & Technol, Greenbelt, MD USA
[4] Huntington High Sch, Huntington, MD USA
来源
PLOS ONE | 2007年 / 2卷 / 06期
基金
美国国家卫生研究院;
关键词
D O I
10.1371/journal.pone.0000517
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background. Decoding of mRNAs is performed by aminoacyl tRNAs (aa-tRNAs). This process is highly accurate, however, at low frequencies (10(-3)-10(-4)) the wrong aa-tRNA can be selected, leading to incorporation of aberrant amino acids. Although our understanding of what constitutes the correct or cognate aa-tRNA: mRNA interaction is well defined, a functional distinction between near-cognate or single mismatched, and unpaired or non-cognate interactions is lacking. Methodology/Principal Findings. Misreading of several synonymous codon substitutions at the catalytic site of firefly luciferase was assayed in Saccharomyces cerevisiae. Analysis of the results in the context of current kinetic and biophysical models of aa-tRNA selection suggests that the defining feature of near-cognate aa-tRNAs is their potential to form mini-helical structures with A-site codons, enabling stimulation of GTPase activity of eukaryotic Elongation Factor 1A (eEF1A). Paromomycin specifically stimulated misreading of near-cognate but not of non-cognate aa-tRNAs, providing a functional probe to distinguish between these two classes. Deletion of the accessory elongation factor eEF1B gamma promoted increased misreading of near-cognate, but hyperaccurate reading of non-cognate codons, suggesting that this factor also has a role in tRNA discrimination. A mutant of eEF1B alpha, the nucleotide exchange factor for eEF1A, promoted a general increase in fidelity, suggesting that the decreased rates of elongation may provide more time for discrimination between aa-tRNAs. A mutant form of ribosomal protein L5 promoted hyperaccurate decoding of both types of codons, even though it is topologically distant from the decoding center. Conclusions/Signficance. It is important to distinguish between near-cognate and non-cognate mRNA: tRNA interactions, because such a definition may be important for informing therapeutic strategies for suppressing these two different categories of mutations underlying many human diseases. This study suggests that the defining feature of near-cognate aa-tRNAs is their potential to form mini-helical structures with A-site codons in the ribosomal decoding center. An aminoglycoside and a ribosomal factor can be used to distinguish between near-cognate and non-cognate interactions.
引用
收藏
页数:11
相关论文
共 53 条
[51]   Synonymous codon usage in Escherichia coli:: Selection for translational accuracy [J].
Stoletzki, Nina ;
Eyre-Walker, Adam .
MOLECULAR BIOLOGY AND EVOLUTION, 2007, 24 (02) :374-381
[52]   THE ELONGATION-FACTOR-3 UNIQUE IN HIGHER FUNGI AND ESSENTIAL FOR PROTEIN-BIOSYNTHESIS IS AN E-SITE FACTOR [J].
TRIANAALONSO, FJ ;
CHAKRABURTTY, K ;
NIERHAUS, KH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (35) :20473-20478
[53]   The pokeweed antiviral protein specifically inhibits Ty1-directed +1 ribosomal frameshifting and retrotransposition in Saccharomyces cerevisiae [J].
Tumer, NE ;
Parikh, BA ;
Li, P ;
Dinman, JD .
JOURNAL OF VIROLOGY, 1998, 72 (02) :1036-1042