The impact of mammalian gene regulation concepts on functional genomic research, metabolic engineering, and advanced gene therapies

被引:133
作者
Fussenegger, M [1 ]
机构
[1] Swiss Fed Inst Technol, Swiss Fed Inst Technol, Inst Biotechnol, CH-8093 Zurich, Switzerland
关键词
D O I
10.1021/bp000129c
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Regulation of heterologous gene expression is of prime importance for a wide variety of basic and applied biological research areas including functional genomics, tissue engineering, gene therapy, and biopharmaceutical manufacturing. Initial gene regulation strategies employed endogenous responsive elements, which resulted in pleiotropic interference of transgene expression with host regulatory networks. Current regulation systems are binary and consist of chimeric transactivators and responsive target promoters of heterologous bacterial or insect origin, or they contain artificially designed components. Regulation of generic systems is based on binding of a transactivator to its cognate promoter, which is modulated by specific molecules such as antibiotics or hormones and brings the transactivation domain into contact with a minimal promoter, thereby inducing target gene expression. Binary gene regulation concepts have been significantly refined in recent years with a focus to improve their regulation performance and their compatibility with human-therapeutic use. In this review we present a detailed analysis of currently available mammalian gene regulation systems and document progress that has pioneered the use of such systems in various aspects of human therapy.
引用
收藏
页码:1 / 51
页数:51
相关论文
共 379 条
[21]   CONTRAGESTION AND OTHER CLINICAL-APPLICATIONS OF RU-486, AN ANTIPROGESTERONE AT THE RECEPTOR [J].
BAULIEU, EE .
SCIENCE, 1989, 245 (4924) :1351-1357
[22]   CONTACTS BETWEEN TET REPRESSOR AND TET OPERATOR REVEALED BY NEW RECOGNITION SPECIFICITIES OF SINGLE AMINO-ACID REPLACEMENT MUTANTS [J].
BAUMEISTER, R ;
HELBL, V ;
HILLEN, W .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 226 (04) :1257-1270
[23]   Transcriptional regulation by steroid hormones [J].
Beato, M ;
Chavez, S ;
Truss, M .
STEROIDS, 1996, 61 (04) :240-251
[24]   An activator/repressor dual system allows tight tetracycline-regulated gene expression in budding yeast [J].
Bellí, G ;
Garí, E ;
Piedrafita, L ;
Aldea, N ;
Herrero, E .
NUCLEIC ACIDS RESEARCH, 1998, 26 (04) :942-947
[25]   Controlling protein association and subcellular localization with a synthetic ligand that induces heterodimerization of proteins [J].
Belshaw, PJ ;
Ho, SN ;
Crabtree, GR ;
Schreiber, SL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (10) :4604-4607
[26]   SELECTIVE-INHIBITION OF ACTIVATED BUT NOT BASAL TRANSCRIPTION BY THE ACIDIC ACTIVATION DOMAIN OF VP16 - EVIDENCE FOR TRANSCRIPTIONAL ADAPTERS [J].
BERGER, SL ;
CRESS, WD ;
CRESS, A ;
TRIEZENBERG, SJ ;
GUARENTE, L .
CELL, 1990, 61 (07) :1199-1208
[27]   Alphaviruses as vectors for gene delivery [J].
Berglund, P ;
Tubulekas, I ;
Liljestrom, P .
TRENDS IN BIOTECHNOLOGY, 1996, 14 (04) :130-134
[28]   An adenovirus mutant that replicates selectively in p53-deficient human tumor cells [J].
Bischoff, JR ;
Kim, DH ;
Williams, A ;
Heise, C ;
Horn, S ;
Muna, M ;
Ng, L ;
Nye, JA ;
SampsonJohannes, A ;
Fattaey, A ;
McCormick, F .
SCIENCE, 1996, 274 (5286) :373-376
[29]   MOLECULAR CHARACTERIZATION AND TRANSCRIPTIONAL ANALYSIS OF A MULTIDRUG-RESISTANCE GENE CLONED FROM THE PRISTINAMYCIN-PRODUCING ORGANISM, STREPTOMYCES-PRISTINAESPIRALIS [J].
BLANC, V ;
SALAHBEY, K ;
FOLCHER, M ;
THOMPSON, CJ .
MOLECULAR MICROBIOLOGY, 1995, 17 (05) :989-999
[30]   Tet B or not tet B: Advances in tetracycline-inducible gene expression - Commentary [J].
Blau, HM ;
Rossi, FMV .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (03) :797-799