Digital channels

被引:2
作者
Broomhead, DS [1 ]
Huke, JP [1 ]
Muldoon, MR [1 ]
机构
[1] Univ Manchester, Inst Sci & Technol, Dept Math, Manchester M60 1QD, Lancs, England
来源
IEEE 2000 ADAPTIVE SYSTEMS FOR SIGNAL PROCESSING, COMMUNICATIONS, AND CONTROL SYMPOSIUM - PROCEEDINGS | 2000年
关键词
D O I
10.1109/ASSPCC.2000.882458
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we propose a new class of models of digital communications channels. This class is rich enough to include recursive, nonlinear channels as well as the usual linear finite and infinite inpulse response structures. We develop this class to allow for oversampling (in the sense that the channel output is sampled at an integer multiple of the input baud rate) and state theorems which give necessary and sufficient conditions that the channel output can be used to recover the input sequence unambiguously.
引用
收藏
页码:123 / 128
页数:6
相关论文
共 9 条
[1]   GENERIC OBSERVABILITY OF DIFFERENTIABLE SYSTEMS [J].
AEYELS, D .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1981, 19 (05) :595-603
[2]  
Barnsley M. F., 2014, Fractals Everywhere
[3]  
Desoer C. A., 1970, NOTES 2 COURSE LINEA
[4]   Iterated random functions [J].
Diaconis, P ;
Freedman, D .
SIAM REVIEW, 1999, 41 (01) :45-76
[5]  
HUI L, 1996, IEEE T SIGNAL PROCES, V50, P83
[6]   GEOMETRY FROM A TIME-SERIES [J].
PACKARD, NH ;
CRUTCHFIELD, JP ;
FARMER, JD ;
SHAW, RS .
PHYSICAL REVIEW LETTERS, 1980, 45 (09) :712-716
[7]  
RUELLE D, 1989, CHAOTIC EVOLUTION ST
[8]   EMBEDOLOGY [J].
SAUER, T ;
YORKE, JA ;
CASDAGLI, M .
JOURNAL OF STATISTICAL PHYSICS, 1991, 65 (3-4) :579-616
[9]  
Takens F., 1981, LECT NOTES MATH, V366-381