Iterated random functions

被引:420
作者
Diaconis, P [1 ]
Freedman, D
机构
[1] Stanford Univ, Dept Math & Stat, Stanford, CA 94305 USA
[2] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
关键词
Markov chains; products of random matrices; iterated function systems; coupling from the past;
D O I
10.1137/S0036144598338446
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Iterated random functions are used to draw pictures or simulate large Ising models, among other applications. They offer a method for studying the steady state distribution of a Markov chain, and give useful bounds on rates of convergence in a variety of examples. The present paper surveys the field and presents some new examples. There is a simple unifying idea: the iterates of random Lipschitz functions converge if the functions are contracting on the average.
引用
收藏
页码:45 / 76
页数:32
相关论文
共 76 条
[1]   ON ASYMPTOTIC DISTRIBUTIONS OF ESTIMATES OF PARAMETERS OF STOCHASTIC DIFFERENCE-EQUATIONS [J].
ANDERSON, TW .
ANNALS OF MATHEMATICAL STATISTICS, 1959, 30 (03) :676-687
[2]  
[Anonymous], 1984, ASYMPTOTIC METHODS Q
[3]  
[Anonymous], 1989, REAL ANAL PROBABILIT
[4]  
[Anonymous], 1992, Stochastic Stability of Markov chains
[5]  
[Anonymous], 1979, Monte Carlo Methods, DOI DOI 10.1007/978-94-009-5819-7
[6]  
[Anonymous], INST MATH S
[7]  
Arnold L, 1992, DIFFUSION PROCESSES, VII, P283
[8]  
Babillot M, 1997, ANN PROBAB, V25, P478
[9]   ERGODIC-THEORY OF STOCHASTIC PETRI NETWORKS [J].
BACCELLI, F .
ANNALS OF PROBABILITY, 1992, 20 (01) :375-396
[10]  
Baccelli F, 1992, SYNCHRONIZATION LINE