Iterated random functions

被引:420
作者
Diaconis, P [1 ]
Freedman, D
机构
[1] Stanford Univ, Dept Math & Stat, Stanford, CA 94305 USA
[2] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
关键词
Markov chains; products of random matrices; iterated function systems; coupling from the past;
D O I
10.1137/S0036144598338446
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Iterated random functions are used to draw pictures or simulate large Ising models, among other applications. They offer a method for studying the steady state distribution of a Markov chain, and give useful bounds on rates of convergence in a variety of examples. The present paper surveys the field and presents some new examples. There is a simple unifying idea: the iterates of random Lipschitz functions converge if the functions are contracting on the average.
引用
收藏
页码:45 / 76
页数:32
相关论文
共 76 条
[21]  
BRANDT A, 1990, STATIONARY STOCHASTI
[22]   THE STRONG LAW OF LARGE NUMBERS FOR A CLASS OF MARKOV-CHAINS [J].
BREIMAN, L .
ANNALS OF MATHEMATICAL STATISTICS, 1960, 31 (03) :801-803
[23]  
BROWN K, 1997, IN PRESS ANN PROBAB
[24]  
Chamayou J.-F., 1991, J THEORET PROBAB, V4, P3
[25]   DISTRIBUTION-FUNCTIONS OF MEANS OF A DIRICHLET PROCESS [J].
CIFARELLI, DM ;
REGAZZINI, E .
ANNALS OF STATISTICS, 1990, 18 (01) :429-442
[26]  
Crownover RM., 1995, Introduction to fractals and chaos
[27]  
DIACONIS P., 1996, BAYESIAN STAT, V5, P97
[28]  
DIACONIS P, 1986, CONT MATH, V50, P173
[29]   MEASURABLE SETS OF MEASURES [J].
DUBINS, L ;
FREEDMAN, D .
PACIFIC JOURNAL OF MATHEMATICS, 1964, 14 (04) :1211-&
[30]   INVARIANT PROBABILITIES FOR CERTAIN MARKOV PROCESSES [J].
DUBINS, LE ;
FREEDMAN, DA .
ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (04) :837-&