Iterated random functions

被引:420
作者
Diaconis, P [1 ]
Freedman, D
机构
[1] Stanford Univ, Dept Math & Stat, Stanford, CA 94305 USA
[2] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
关键词
Markov chains; products of random matrices; iterated function systems; coupling from the past;
D O I
10.1137/S0036144598338446
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Iterated random functions are used to draw pictures or simulate large Ising models, among other applications. They offer a method for studying the steady state distribution of a Markov chain, and give useful bounds on rates of convergence in a variety of examples. The present paper surveys the field and presents some new examples. There is a simple unifying idea: the iterates of random Lipschitz functions converge if the functions are contracting on the average.
引用
收藏
页码:45 / 76
页数:32
相关论文
共 76 条
[11]  
Baccelli F., 1994, ELEMENTS QUEUING THE
[12]  
Barnsley M., 1993, Fractals everywhere
[13]   A NEW CLASS OF MARKOV-PROCESSES FOR IMAGE ENCODING [J].
BARNSLEY, MF ;
ELTON, JH .
ADVANCES IN APPLIED PROBABILITY, 1988, 20 (01) :14-32
[14]   A central limit theorem for contractive stochastic dynamical systems [J].
Benda, M .
JOURNAL OF APPLIED PROBABILITY, 1998, 35 (01) :200-205
[15]  
BIDIGARE P, 1997, IN PRESS DUKE MATH J
[16]  
Blumenthal R. M., 1972, P 6 BERK S MATH STAT, VII, P33
[17]   CONTINUOUS COLLECTIONS OF MEASURES [J].
BLUMENTHAL, RM ;
CORSON, HH .
ANNALES DE L INSTITUT FOURIER, 1970, 20 (02) :193-+
[18]  
BOROVKOV AA, 1992, SIB ADV MATH, V2, P16
[19]   STRICT STATIONARITY OF GENERALIZED AUTOREGRESSIVE PROCESSES [J].
BOUGEROL, P ;
PICARD, N .
ANNALS OF PROBABILITY, 1992, 20 (04) :1714-1730
[20]   THE STOCHASTIC EQUATION YN+1=ANYN+BN WITH STATIONARY COEFFICIENTS [J].
BRANDT, A .
ADVANCES IN APPLIED PROBABILITY, 1986, 18 (01) :211-220