Amorphous silica precipitation (60 to 120°C):: Comparison of laboratory and field rates

被引:100
作者
Carroll, S [1 ]
Mroczek, E
Alai, M
Ebert, M
机构
[1] Lawrence Livermore Natl Lab, Div Earth Sci, Livermore, CA 94450 USA
[2] Wairakei Res Ctr, Inst Geol & Nucl Sci, Wairakei, New Zealand
关键词
D O I
10.1016/S0016-7037(98)00052-0
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Amorphous silica precipitation behavior was investigated in simple laboratory experiments and more complex field experiments in the Wairakei, New Zealand, geothermal area. Both the laboratory and field precipitation rates an dependent on reaction affinity for (AB1) SiO2(Am.Si.) +/- 2H(2)O double left right arrow H4SiO4 In simple laboratory solutions supersaturated with respect to amorphous silica by a factor less than 1.3 and in the absence of chemical impurities, precipitation rates have a first-order dependence on f(hG(f)) (AB2) Rate(ppt) ([Si] m(-2) s(-1)) = k(ppt) exp (-E-a/RT) (1 - exp Delta Gr/RT) where k(ppt) = 10(-1. 9) [Si] m(-2) s(-1) and E-a = 61 +/- 1 kJ mol(-1). In more supersaturated and chemically complex field solutions, amorphous silica precipitation rates have a nonlinear dependence on f(Delta G(r)) and may be described by (AB3) Rate(ppt) ([Si] m(-2) s(-1)) = 10-(10.00+/-0.06) (exp Delta G(r)/RT)(4.4+/-0.3) or (AB4) Rate(ppt) ([Si] m(-2) s(-1)) = 10(-9.29+/-0.03) (Delta G(r)/RT)(1.7+/-0.1) The changes in reaction order, form of f(Delta G(r),), and chemical impurities suggest that the dominant amorphous silica precipitation mechanism changes from elementary reaction control in the simple laboratory experiments to surface defect/surface nucleation control in the complex field experiments. Copyright (C) 1998 Elsevier Science Ltd.
引用
收藏
页码:1379 / 1396
页数:18
相关论文
共 41 条
[11]  
Cussler E. L., 1984, DIFFUSION MASS TRANS
[12]  
Dove PM, 1995, REV MINERAL, V31, P235
[13]   KINETICS OF REACTION BETWEEN SILICIC-ACID AND AMORPHOUS SILICA SURFACES IN NACL SOLUTIONS [J].
FLEMING, BA .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1986, 110 (01) :40-64
[14]  
FOURNIER RO, 1977, AM MINERAL, V62, P1052
[15]   HYDROTHERMAL GROWTH OF QUARTZ CRYSTALS IN KCI SOLUTION [J].
HOSAKA, M ;
TAKI, S .
JOURNAL OF CRYSTAL GROWTH, 1981, 53 (03) :542-546
[16]   HYDROTHERMAL GROWTH OF QUARTZ CRYSTALS IN NACL SOLUTION [J].
HOSAKA, M ;
TAKI, S .
JOURNAL OF CRYSTAL GROWTH, 1981, 52 (APR) :837-842
[17]  
Iler RK, 1979, CHEM SILICA SOLUBILI, DOI DOI 10.1002/ANGE.19800920433
[18]   SUPCRT92 - A SOFTWARE PACKAGE FOR CALCULATING THE STANDARD MOLAL THERMODYNAMIC PROPERTIES OF MINERALS, GASES, AQUEOUS SPECIES, AND REACTIONS FROM 1-BAR TO 5000-BAR AND 0-DEGREES-C TO 1000-DEGREES-C [J].
JOHNSON, JW ;
OELKERS, EH ;
HELGESON, HC .
COMPUTERS & GEOSCIENCES, 1992, 18 (07) :899-947
[19]  
Lasaga ACK., 1981, REV MINERAL GEOCHEM, DOI 10.1515/9781501508233
[20]   KINETICS OF HYDROTHERMAL QUARTZ CRYSTALLIZATION [J].
LAUDISE, RA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1959, 81 (03) :562-566