Relationship between aerosol oxidation level and hygroscopic properties of laboratory generated secondary organic aerosol (SOA) particles

被引:225
作者
Massoli, P. [1 ]
Lambe, A. T. [1 ,2 ]
Ahern, A. T. [1 ,2 ]
Williams, L. R. [1 ]
Ehn, M. [3 ]
Mikkila, J. [3 ]
Canagaratna, M. R. [1 ]
Brune, W. H. [4 ]
Onasch, T. B. [1 ]
Jayne, J. T. [1 ]
Petaja, T. [3 ]
Kulmala, M. [3 ]
Laaksonen, A. [5 ]
Kolb, C. E. [1 ]
Davidovits, P. [2 ]
Worsnop, D. R. [1 ,3 ,5 ]
机构
[1] Aerodyne Res Inc, Billerica, MA 01821 USA
[2] Boston Coll, Dept Chem, Chestnut Hill, MA 02467 USA
[3] Univ Helsinki, Dept Phys, Div Atmospher Sci, FI-00014 Helsinki, Finland
[4] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA
[5] Univ Eastern Finland, Div Phys, FI-70211 Kuopio, Finland
基金
美国国家科学基金会; 芬兰科学院; 欧洲研究理事会;
关键词
SINGLE-PARAMETER REPRESENTATION; CONDENSATION NUCLEUS ACTIVITY; MASS-SPECTROMETER; HIGH-RESOLUTION; CHEMICAL-COMPOSITION; GROWTH-KINETICS; CCN ACTIVITY; INTEX-B; ACTIVATION; GAP;
D O I
10.1029/2010GL045258
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Laboratory experiments investigated the relationship between oxidation level and hygroscopic properties of secondary organic aerosol (SOA) particles generated via OH radical oxidation in an aerosol flow reactor. The hygroscopic growth factor at 90% RH (HGF(90%)), the CCN activity (kappa(ORG,CCN)) and the level of oxidation (atomic O:C ratio) of the SOA particles were measured. Both HGF(90%) and kappa(ORG,CCN) increased with O:C; the HGF(90%) varied linearly with O:C, while kappa(ORG,CCN) mostly followed a nonlinear trend. An average HGF(90%) of 1.25 and kappa(ORG),(CCN) of 0.19 were measured for O:C of 0.65, in agreement with results reported for ambient data. The kappa(ORG) values estimated from the HGF(90%) (kappa(ORG,HGF)) were 20 to 50% lower than paired kappa(ORG),(CCN) values for all SOA particles except 1,3,5-trimethylbenzene (TMB), the least hygroscopic of the SOA systems. Within the limitations of instrumental capabilities, we show that differences in hygroscopic behavior among the investigated SOA systems may correspond to differences in elemental composition. Citation: Massoli, P., et al. (2010), Relationship between aerosol oxidation level and hygroscopic properties of laboratory generated secondary organic aerosol (SOA) particles, Geophys. Res. Lett., 37, L24801, doi:10.1029/2010GL045258.
引用
收藏
页数:5
相关论文
共 34 条
[1]   O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry [J].
Aiken, Allison C. ;
Decarlo, Peter F. ;
Kroll, Jesse H. ;
Worsnop, Douglas R. ;
Huffman, J. Alex ;
Docherty, Kenneth S. ;
Ulbrich, Ingrid M. ;
Mohr, Claudia ;
Kimmel, Joel R. ;
Sueper, Donna ;
Sun, Yele ;
Zhang, Qi ;
Trimborn, Achim ;
Northway, Megan ;
Ziemann, Paul J. ;
Canagaratna, Manjula R. ;
Onasch, Timothy B. ;
Alfarra, M. Rami ;
Prevot, Andre S. H. ;
Dommen, Josef ;
Duplissy, Jonathan ;
Metzger, Axel ;
Baltensperger, Urs ;
Jimenez, Jose L. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (12) :4478-4485
[2]   Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling [J].
Bates, T. S. ;
Anderson, T. L. ;
Baynard, T. ;
Bond, T. ;
Boucher, O. ;
Carmichael, G. ;
Clarke, A. ;
Erlick, C. ;
Guo, H. ;
Horowitz, L. ;
Howell, S. ;
Kulkarni, S. ;
Maring, H. ;
McComiskey, A. ;
Middlebrook, A. ;
Noone, K. ;
O'Dowd, C. D. ;
Ogren, J. ;
Penner, J. ;
Quinn, P. K. ;
Ravishankara, A. R. ;
Savoie, D. L. ;
Schwartz, S. E. ;
Shinozuka, Y. ;
Tang, Y. ;
Weber, R. J. ;
Wu, Y. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2006, 6 :1657-1732
[3]   The hygroscopicity parameter (κ) of ambient organic aerosol at a field site subject to biogenic and anthropogenic influences: relationship to degree of aerosol oxidation [J].
Chang, R. Y-W. ;
Slowik, J. G. ;
Shantz, N. C. ;
Vlasenko, A. ;
Liggio, J. ;
Sjostedt, S. J. ;
Leaitch, W. R. ;
Abbatt, J. P. D. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (11) :5047-5064
[4]   Elemental analysis of chamber organic aerosol using an aerodyne high-resolution aerosol mass spectrometer [J].
Chhabra, P. S. ;
Flagan, R. C. ;
Seinfeld, J. H. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (09) :4111-4131
[5]   Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer [J].
DeCarlo, Peter F. ;
Kimmel, Joel R. ;
Trimborn, Achim ;
Northway, Megan J. ;
Jayne, John T. ;
Aiken, Allison C. ;
Gonin, Marc ;
Fuhrer, Katrin ;
Horvath, Thomas ;
Docherty, Kenneth S. ;
Worsnop, Doug R. ;
Jimenez, Jose L. .
ANALYTICAL CHEMISTRY, 2006, 78 (24) :8281-8289
[6]   Cloud forming potential of secondary organic aerosol under near atmospheric conditions [J].
Duplissy, J. ;
Gysel, Martin ;
Alfarra, M.R. ;
Dommen, J. ;
Metzger, A. ;
Prevot, A.S.H. ;
Weingartner, E. ;
Laaksonen, A. ;
Raatikainen, T. ;
Good, N. ;
Turner, S.F. ;
McFiggans, G. ;
Baltensperger, U. .
Geophysical Research Letters, 2008, 35 (02)
[7]  
Duplissy J., 2010, ATMOS CHEM PHYS DISC, V10, P19, DOI [10.5194/ acpd-10-19309-2010, DOI 10.5194/ACPD-10-19309-2010]
[8]   CCN activity and droplet growth kinetics of fresh and aged monoterpene secondary organic aerosol [J].
Engelhart, G. J. ;
Asa-Awuku, A. ;
Nenes, A. ;
Pandis, S. N. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2008, 8 (14) :3937-3949
[9]   CCN predictions using simplified assumptions of organic aerosol composition and mixing state: a synthesis from six different locations [J].
Ervens, B. ;
Cubison, M. J. ;
Andrews, E. ;
Feingold, G. ;
Ogren, J. A. ;
Jimenez, J. L. ;
Quinn, P. K. ;
Bates, T. S. ;
Wang, J. ;
Zhang, Q. ;
Coe, H. ;
Flynn, M. ;
Allan, J. D. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (10) :4795-4807
[10]   Consistency between parameterisations of aerosol hygroscopicity and CCN activity during the RHaMBLe discovery cruise [J].
Good, N. ;
Topping, D. O. ;
Allan, J. D. ;
Flynn, M. ;
Fuentes, E. ;
Irwin, M. ;
Williams, P. I. ;
Coe, H. ;
McFiggans, G. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (07) :3189-3203