Convergent evolution of domain architectures (is rare)

被引:123
作者
Gough, J [1 ]
机构
[1] RIKEN, Genom Sci Ctr, Tsurumi Ku, Yokohama, Kanagawa 2300045, Japan
关键词
D O I
10.1093/bioinformatics/bti204
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: In this paper, we shall examine the evolution of domain architectures across 62 genomes of known phylogeny including all kingdoms of life. We look in particular at the possibility of convergent evolution, with a view to determining the extent to which the architectures observed in the genomes are due to functional necessity or evolutionary descent. We used domains of known structure, because from this and other information we know their evolutionary relationships. We use a range of methods including phylogenetic grouping, sequence similarity/alignment, mutation rates and comparative genomics to approach this difficult problem from several angles. Results: Although we do not claim an exhaustive analysis, we conclude that between 0.4 and 4% of sequences are involved in convergent evolution of domain architectures, and expect the actual number to be close to the lower bound. We also made two incidental observations, albeit on a small sample: the events leading to convergent evolution appear to be random with no functional or structural preferences, and changes in the number of tandem repeat domains occur more readily than changes which alter the domain composition. Conclusion: The principal conclusion is that the observed domain architectures of the sequences in the genomes are driven by evolutionary descent rather than functional necessity.
引用
收藏
页码:1464 / 1471
页数:8
相关论文
共 38 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]   Convergent evolution of gene networks by single-gene duplications in higher eukaryotes [J].
Amoutzias, GD ;
Robertson, DL ;
Oliver, SG ;
Bornberg-Bauer, E .
EMBO REPORTS, 2004, 5 (03) :274-279
[3]   Domain combinations in archaeal, eubacterial and eukaryotic proteomes [J].
Apic, G ;
Gough, J ;
Teichmann, SA .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 310 (02) :311-325
[4]   The InterPro database, an integrated documentation resource for protein families, domains and functional sites [J].
Apweiler, R ;
Attwood, TK ;
Bairoch, A ;
Bateman, A ;
Birney, E ;
Biswas, M ;
Bucher, P ;
Cerutti, T ;
Corpet, F ;
Croning, MDR ;
Durbin, R ;
Falquet, L ;
Fleischmann, W ;
Gouzy, J ;
Hermjakob, H ;
Hulo, N ;
Jonassen, I ;
Kahn, D ;
Kanapin, A ;
Karavidopoulou, Y ;
Lopez, R ;
Marx, B ;
Mulder, NJ ;
Oinn, TM ;
Pagni, M ;
Servant, F ;
Sigrist, CJA ;
Zdobnov, EM .
NUCLEIC ACIDS RESEARCH, 2001, 29 (01) :37-40
[5]   The geometry of domain combination in proteins [J].
Bashton, M ;
Chothia, C .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 315 (04) :927-939
[6]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkr1065, 10.1093/nar/gkh121]
[7]   Evolution of the protein repertoire [J].
Chothia, C ;
Gough, J ;
Vogel, C ;
Teichmann, SA .
SCIENCE, 2003, 300 (5626) :1701-1703
[8]   Asymmetric sequence divergence of duplicate genes [J].
Conant, GC ;
Wagner, A .
GENOME RESEARCH, 2003, 13 (09) :2052-2058
[9]   Convergent evolution of gene circuits [J].
Conant, GC ;
Wagner, A .
NATURE GENETICS, 2003, 34 (03) :264-266
[10]   Homology among (βα)8 barrels:: Implications for the evolution of metabolic pathways [J].
Copley, RR ;
Bork, P .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 303 (04) :627-640