Metabolon formation and metabolic channeling in the biosynthesis of plant natural products

被引:403
作者
Jorgensen, K [1 ]
Rasmussen, AV [1 ]
Morant, M [1 ]
Nielsen, AH [1 ]
Bjarnholt, N [1 ]
Zagrobelny, M [1 ]
Bak, S [1 ]
Moller, BL [1 ]
机构
[1] Royal Vet & Agr Univ, Dept Plant Biol, Plant Biochem Lab, DK-1871 Frederiksberg, Copenhagen, Denmark
关键词
D O I
10.1016/j.pbi.2005.03.014
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Metabolon formation and metabolic channeling in plant secondary metabolism enable plants to effectively synthesize specific natural products and to avoid metabolic interference. Channeling can involve different cell types, take advantage of compartmentalization within the same cell or proceed directly within a metabolon. New experimental approaches document the importance of channeling in the synthesis of isoprenoids, alkaloids, phenylpropanoids, flavonoids and cyanogenic glucosides. Metabolon formation and metabolic channeling in natural-product synthesis facilitate attempts to genetically engineer new pathways into plants to improve their content of valuable natural products. They also offer the opportunity to introduce new traits by genetic engineering to produce plant cultivars that adhere to the principle of substantial equivalence.
引用
收藏
页码:280 / 291
页数:12
相关论文
共 74 条
[1]   Colocalization of L-phenylalanine ammonia-lyase and cinnarnate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis [J].
Achnine, L ;
Blancaflor, EB ;
Rasmussen, S ;
Dixon, RA .
PLANT CELL, 2004, 16 (11) :3098-3109
[2]   Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species [J].
Aharoni, A ;
Giri, AP ;
Verstappen, FWA ;
Bertea, CM ;
Sevenier, R ;
Sun, ZK ;
Jongsma, MA ;
Schwab, W ;
Bouwmeester, HJ .
PLANT CELL, 2004, 16 (11) :3110-3131
[3]   cDNA cloning and biochemical characterization of S-adenosyl-L-methionine:: 2,7,4′-trihydroxyisoflavanone 4′-O-methyltransferase, a critical enzyme of the legume isoflavonoid phytoalexin pathway [J].
Akashi, T ;
Sawada, Y ;
Shimada, N ;
Sakurai, N ;
Aoki, T ;
Ayabe, S .
PLANT AND CELL PHYSIOLOGY, 2003, 44 (02) :103-112
[4]  
AKASHI T, 2005, PLANT PHYSIOL, V137, P1
[5]   Metabolic engineering of p-hydroxybenzylglucosinolate in Arabidopsis by expression of the cyanogenic CYP79A1 from Sorghum bicolor [J].
Bak, S ;
Olsen, CE ;
Petersen, BL ;
Moller, BL ;
Halkier, BA .
PLANT JOURNAL, 1999, 20 (06) :663-671
[6]   CYP83B1, a cytochrome P450 at the metabolic branch paint in auxin and indole glucosinolate biosynthesis in Arabidopsis [J].
Bak, S ;
Tax, FE ;
Feldmann, KA ;
Galbraith, DW ;
Feyereisen, R .
PLANT CELL, 2001, 13 (01) :101-111
[7]   Cloning of three A-type cytochromes p450, CYP71E1, CYP98, and CYP99 from Sorghum bicolor (L.) Moench by a PCR approach and identification by expression in Escherichia coli of CYP71E1 as a multifunctional cytochrome p450 in the biosynthesis of the cyanogenic glucoside dhurrin [J].
Bak, S ;
Kahn, RA ;
Nielsen, HL ;
Moller, BL ;
Halkier, BA .
PLANT MOLECULAR BIOLOGY, 1998, 36 (03) :393-405
[8]   The involvement of two P450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis [J].
Bak, S ;
Feyereisen, R .
PLANT PHYSIOLOGY, 2001, 127 (01) :108-118
[9]   THE TRYPTOPHAN SYNTHASE ALPHA-2-BETA-2 COMPLEX - KINETIC-STUDIES WITH A MUTANT ENZYME (BETA-K87T) TO PROVIDE EVIDENCE FOR ALLOSTERIC ACTIVATION BY AN AMINOACRYLATE INTERMEDIATE [J].
BANIK, U ;
ZHU, DM ;
CHOCK, PB ;
MILES, EW .
BIOCHEMISTRY, 1995, 34 (39) :12704-12711
[10]   The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450CYP83B1, a modulator of auxin homeostasis [J].
Barlier, I ;
Kowalczyk, M ;
Marchant, A ;
Ljung, K ;
Bhalerao, R ;
Bennett, M ;
Sandberg, G ;
Bellini, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (26) :14819-14824