RNA polymerase mutations that impair conversion to a termination-resistant complex by Q antiterminator proteins

被引:24
作者
Santangelo, TJ
Mooney, RA
Landick, R
Roberts, JW [1 ]
机构
[1] Cornell Univ, Dept Genet & Mol Biol, Ithaca, NY 14853 USA
[2] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA
关键词
RNA polymerase; antitermination; termination; transcription; Q-protein; bacteriophage lambda;
D O I
10.1101/gad.1082103
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Bacteriophage lambda Q-protein stably binds and modifies RNA polymerase (RNAP) to a termination-resistant form. We describe amino acid substitutions in RNAP that disrupt Q-mediated antitermination in vivo and in vitro. The positions of these substitutions in the modeled RNAP/DNA/RNA ternary elongation complex, and their biochemical properties, suggest that they do not define a binding site for Q in RNAP, but instead act by impairing interactions among core RNAP subunits and nucleic acids that are essential for Q modification. A specific conjecture is that Q modification stabilizes interactions of RNAP with the DNA/RNA hybrid and optimizes alignment of the nucleic acids in the catalytic site. Such changes would inhibit the activity of the RNA hairpin of an intrinsic terminator to disrupt the 5'-terminal bases of the hybrid and remove the RNA 3' terminus from the active site.
引用
收藏
页码:1281 / 1292
页数:12
相关论文
共 43 条
[1]   PROCEDURE FOR RAPID, LARGE-SCALE PURIFICATION OF ESCHERICHIA-COLI DNA-DEPENDENT RNA-POLYMERASE INVOLVING POLYMIN-P PRECIPITATION AND DNA-CELLULOSE CHROMATOGRAPHY [J].
BURGESS, RR ;
JENDRISAK, JJ .
BIOCHEMISTRY, 1975, 14 (21) :4634-4638
[2]   Structural basis of transcription:: α-Amanitin-RNA polymerase II cocrystal at 2.8 A resolution [J].
Bushnell, DA ;
Cramer, P ;
Kornberg, RD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (03) :1218-1222
[3]  
CALDWELL RC, 1992, PCR METH APPL, V2, P28
[4]   Structural mechanism for rifampicin inhibition of bacterial RNA polymerase [J].
Campbell, EA ;
Korzheva, N ;
Mustaev, A ;
Murakami, K ;
Nair, S ;
Goldfarb, A ;
Darst, SA .
CELL, 2001, 104 (06) :901-912
[5]   Architecture of RNA polymerase II and implications for the transcription mechanism [J].
Cramer, P ;
Bushnell, DA ;
Fu, JH ;
Gnatt, AL ;
Maier-Davis, B ;
Thompson, NE ;
Burgess, RR ;
Edwards, AM ;
David, PR ;
Kornberg, RD .
SCIENCE, 2000, 288 (5466) :640-649
[6]   RNA polymerase: Structural similarities between bacterial RNA polymerase and eukaryotic RNA polymerase II [J].
Ebright, RH .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 304 (05) :687-698
[7]   Swing-gate model of nucleotide entry into the RNA polymerase active center [J].
Epshtein, V ;
Mustaev, A ;
Markovtsov, V ;
Bereshchenko, O ;
Nikiforov, V ;
Goldfarb, A .
MOLECULAR CELL, 2002, 10 (03) :623-634
[8]   Structural basis of transcription:: An RNA polymerase II elongation complex at 3.3 Å resolution [J].
Gnatt, AL ;
Cramer, P ;
Fu, JH ;
Bushnell, DA ;
Kornberg, RD .
SCIENCE, 2001, 292 (5523) :1876-1882
[9]   SEQUENCES REQUIRED FOR ANTITERMINATION BY PHAGE-82 Q-PROTEIN [J].
GOLIGER, JA ;
ROBERTS, JW .
JOURNAL OF MOLECULAR BIOLOGY, 1989, 210 (03) :461-471
[10]   TRANSCRIPTIONAL ANTITERMINATION [J].
GREENBLATT, J ;
NODWELL, JR ;
MASON, SW .
NATURE, 1993, 364 (6436) :401-406