Observation of zero current density in the core of JET discharges with lower hybrid heating and current drive

被引:126
作者
Hawkes, NC [1 ]
Stratton, BC
Tala, T
Challis, CD
Conway, G
DeAngelis, R
Giroud, C
Hobirk, J
Joffrin, E
Lomas, P
Lotte, P
Mailloux, J
Mazon, D
Rachlew, E
Reyes-Cortes, S
Solano, E
Zastrow, KD
机构
[1] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[2] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[3] Assoc Euratom Tekes, VTT Chem Technol, Espoo, Finland
[4] Max Planck Inst Plasmaphys, EURATOM Assoc, D-85740 Garching, Germany
[5] EURATOM Assoc, ENEA Fus, CRE Frascati, Rome, Italy
[6] CEA Cadarache, EURATOM Assoc, CEA, F-13108 St Paul Durance, France
[7] Royal Inst Technol, Dept Phys 1, Euratom NFR, SE-10044 Stockholm, Sweden
[8] Ctr Fusao Nucl, Euratom IST Assoc, P-1049001 Lisbon, Portugal
[9] CIEMAT, CIEMAT Fus, Assoc EURATOM, E-28040 Madrid, Spain
[10] EFDA CSU JET, Abingdon OX14 3EA, Oxon, England
关键词
D O I
10.1103/PhysRevLett.87.115001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Simultaneous current ramping and application of lower hybrid heating and current drive (LHCD) have produced a region with zero current density within measurement errors in the core (r/a less than or equal to 0.2) of JET tokamak optimized shear discharges. The reduction of core current density is consistent with a simple physical explanation and numerical simulations of radial current diffusion including the effects of LHCD. However, the core current density is clamped at zero, indicating the existence of a physical mechanism which prevents it from becoming negative.
引用
收藏
页码:art. no. / 115001
页数:4
相关论文
共 17 条
[1]   Effect of q-profile modification by LHCD on internal transport barriers in JET [J].
Challis, CD ;
Baranov, YF ;
Conway, GD ;
Gormezano, C ;
Gowers, CW ;
Hawkes, NC ;
Hender, TC ;
Joffrin, E ;
Mailloux, J ;
Mazon, D ;
Podda, S ;
Prentice, R ;
Rimini, FG ;
Sharapov, SE ;
Sips, ACC ;
Stratton, BC ;
Testa, D ;
Zastrow, KD .
PLASMA PHYSICS AND CONTROLLED FUSION, 2001, 43 (07) :861-879
[2]   NON-INDUCTIVELY DRIVEN CURRENTS IN JET [J].
CHALLIS, CD ;
CORDEY, JG ;
HAMNEN, H ;
STUBBERFIELD, PM ;
CHRISTIANSEN, JP ;
LAZZARO, E ;
MUIR, DG ;
STORK, D ;
THOMPSON, E .
NUCLEAR FUSION, 1989, 29 (04) :563-570
[3]   Fast ray tracing code for LCHD simulations [J].
Esterkin, AR ;
Piliya, AD .
NUCLEAR FUSION, 1996, 36 (11) :1501-1512
[4]  
GENACCHI G, 1988, 19885 ENEA RT TIB
[5]   Design of the joint European torus motional Stark effect diagnostic [J].
Hawkes, NC ;
Blackler, K ;
Viaccoz, B ;
Wilson, CH ;
Migozzi, JB ;
Stratton, BC .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1999, 70 (01) :894-897
[6]   NEOCLASSICAL POLOIDAL AND TOROIDAL ROTATION IN TOKAMAKS [J].
KIM, YB ;
DIAMOND, PH ;
GROEBNER, RJ .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1991, 3 (08) :2050-2060
[7]  
KOLESNICHENKO YI, 1992, REV PLASMA PHYS, V17, P1
[8]   RECONSTRUCTION OF CURRENT PROFILE PARAMETERS AND PLASMA SHAPES IN TOKAMAKS [J].
LAO, LL ;
STJOHN, H ;
STAMBAUGH, RD ;
KELLMAN, AG ;
PFEIFFER, W .
NUCLEAR FUSION, 1985, 25 (11) :1611-1622
[9]   MAGNETIC-FIELD PITCH-ANGLE MEASUREMENTS IN THE PBX-M TOKAMAK USING THE MOTIONAL STARK-EFFECT [J].
LEVINTON, FM ;
FONCK, RJ ;
GAMMEL, GM ;
KAITA, R ;
KUGEL, HW ;
POWELL, ET ;
ROBERTS, DW .
PHYSICAL REVIEW LETTERS, 1989, 63 (19) :2060-2063
[10]   IMPROVED CONFINEMENT WITH REVERSED MAGNETIC SHEAR IN TFTR [J].
LEVINTON, FM ;
ZARNSTORFF, MC ;
BATHA, SH ;
BELL, M ;
BELL, RE ;
BUDNY, RV ;
BUSH, C ;
CHANG, Z ;
FREDRICKSON, E ;
JANOS, A ;
MANICKAM, J ;
RAMSEY, A ;
SABBAGH, SA ;
SCHMIDT, GL ;
SYNAKOWSKI, EJ ;
TAYLOR, G .
PHYSICAL REVIEW LETTERS, 1995, 75 (24) :4417-4420