A disattenuated correlation estimate when variables are measured with error: Illustration estimating cross-platform correlations

被引:6
作者
Archer, K. J. [1 ]
Dumur, C. I. [2 ]
Taylor, G. S. [3 ]
Chaplin, M. D. [4 ]
Guiseppi-Elie, A. [3 ]
Buck, G. A. [4 ]
Grant, G. [5 ]
Ferreira-Gonzalez, A. [2 ]
Garrett, C. T. [2 ]
机构
[1] Virginia Commonwealth Univ, Dept Biostat, Richmond, VA 23298 USA
[2] Virginia Commonwealth Univ, Dept Pathol, Richmond, VA 23298 USA
[3] Virginia Commonwealth Univ, Ctr Bioelect Biosensors & Biochips, Sch Engn, Richmond, VA 23284 USA
[4] Virginia Commonwealth Univ, Ctr Study Biol Complex, Richmond, VA 23284 USA
[5] George Mason Univ, Mol & Microbiol Dept, Manassas, VA 20110 USA
关键词
measurement error; correlation; microarray; regression calibration;
D O I
10.1002/sim.2984
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Previous cross-platform reproducibility studies have compared consistency of intensities as well as consistency of fold changes across different platforms using Pearson's correlation coefficient. In this study, we propose the use of measurement error models for estimating gene-specific correlations. Additionally, gene-specific reliability estimates are shown to be useful in prioritizing clones for sequence verification rather than selecting clones using a simple random sample. The proposed 'disattenuated' correlation may prove useful in a wide variety of studies when both X and Y are measured with error, such as in confirmation studies of microarray gene expression values, wherein more reliable laboratory assays such as real-time polymerase chain reaction are used. Copyright (C) 2007 John Wiley & Sons, Ltd.
引用
收藏
页码:1026 / 1039
页数:14
相关论文
共 44 条
[11]  
Fuller W. A., 2009, Measurement error models
[12]   Bioconductor: open software development for computational biology and bioinformatics [J].
Gentleman, RC ;
Carey, VJ ;
Bates, DM ;
Bolstad, B ;
Dettling, M ;
Dudoit, S ;
Ellis, B ;
Gautier, L ;
Ge, YC ;
Gentry, J ;
Hornik, K ;
Hothorn, T ;
Huber, W ;
Iacus, S ;
Irizarry, R ;
Leisch, F ;
Li, C ;
Maechler, M ;
Rossini, AJ ;
Sawitzki, G ;
Smith, C ;
Smyth, G ;
Tierney, L ;
Yang, JYH ;
Zhang, JH .
GENOME BIOLOGY, 2004, 5 (10)
[13]  
Ghosh Debashis, 2003, Functional & Integrative Genomics, V3, P180
[14]  
Grant GM, 2004, ANTICANCER RES, V24, P441
[15]   Meta-analysis of microarray data on pancreatic cancer defines a set of commonly dysregulated genes [J].
Grützmann, R ;
Boriss, H ;
Ammerpohl, O ;
Lüttges, J ;
Kalthoff, H ;
Schackert, HK ;
Klöppel, G ;
Saeger, HD ;
Pilarsky, C .
ONCOGENE, 2005, 24 (32) :5079-5088
[16]   The regression-calibration method for fitting generalized linear models with additive measurement error [J].
Hardin, James W. ;
Schmiediche, Henrik ;
Carroll, Raymond J. .
STATA JOURNAL, 2003, 3 (04) :361-372
[17]   Robust estimators for expression analysis [J].
Hubbell, E ;
Liu, WM ;
Mei, R .
BIOINFORMATICS, 2002, 18 (12) :1585-1592
[18]   CIBEX: Center for information biology gene EXpression database [J].
Ikeo, K ;
Ishi-i, J ;
Tamura, T ;
Gojobori, T ;
Tateno, Y .
COMPTES RENDUS BIOLOGIES, 2003, 326 (10-11) :1079-1082
[19]   Multiple-laboratory comparison of microarray platforms [J].
Irizarry, RA ;
Warren, D ;
Spencer, F ;
Kim, IF ;
Biswal, S ;
Frank, BC ;
Gabrielson, E ;
Garcia, JGN ;
Geoghegan, J ;
Germino, G ;
Griffin, C ;
Hilmer, SC ;
Hoffman, E ;
Jedlicka, AE ;
Kawasaki, E ;
Martínez-Murillo, F ;
Morsberger, L ;
Lee, H ;
Petersen, D ;
Quackenbush, J ;
Scott, A ;
Wilson, M ;
Yang, YQ ;
Ye, SQ ;
Yu, W .
NATURE METHODS, 2005, 2 (05) :345-349
[20]   Improved background correction for spotted DNA microarrays [J].
Kooperberg, C ;
Fazzio, TG ;
Delrow, JJ ;
Tsukiyama, T .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2002, 9 (01) :55-66