Error bounds for monotone approximation schemes for Hamilton-Jacobi-Bellma equations

被引:74
作者
Barles, G [1 ]
Jakobsen, ER
机构
[1] Univ Tours, Lab Math & Phys Theor, Parc Grandmont, F-37200 Tours, France
[2] Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway
关键词
Hamilton-Jacobi-Bellman equations; switching system; viscosity solution; approximation schemes; finite difference methods; convergence rate; error bound;
D O I
10.1137/S003614290343815X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain error bounds for monotone approximation schemes of Hamilton-Jacobi-Bellman equations. These bounds improve previous results of Krylov and the authors. The key step in the proof of these new estimates is the introduction of a switching system which allows the construction of approximate, (almost) smooth supersolutions for the Hamilton-Jacobi-Bellman equation.
引用
收藏
页码:540 / 558
页数:19
相关论文
共 38 条
[1]  
Abgrall R, 1996, COMMUN PUR APPL MATH, V49, P1339, DOI 10.1002/(SICI)1097-0312(199612)49:12<1339::AID-CPA5>3.0.CO
[2]  
2-B
[3]  
[Anonymous], SIAM J CONTROL OPTIM
[4]  
Barles G., 1991, Asymptotic Analysis, V4, P271
[5]   On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations [J].
Barles, G ;
Jakobsen, ER .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2002, 36 (01) :33-54
[6]   Consistency of generalized finite difference schemes for the stochastic HJB equation [J].
Bonnans, JF ;
Zidani, H .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (03) :1008-1021
[7]   AN APPROXIMATION SCHEME FOR THE OPTIMAL-CONTROL OF DIFFUSION-PROCESSES [J].
CAMILLI, F ;
FALCONE, M .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1995, 29 (01) :97-122
[8]  
CAPUZZODOLCETTA I, 1984, APPL MATH OPT, V11, P161, DOI https://doi.org/10.1007/bf01442176
[9]  
Crandall M. G., 1990, DIFFERENTIAL INTEGRA, V3, P1001
[10]  
CRANDALL MG, 1984, MATH COMPUT, V43, P1, DOI 10.1090/S0025-5718-1984-0744921-8