AN APPROXIMATION SCHEME FOR THE OPTIMAL-CONTROL OF DIFFUSION-PROCESSES

被引:97
作者
CAMILLI, F
FALCONE, M
机构
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 1995年 / 29卷 / 01期
关键词
HAMILTON-JACOBI-BELLMAN EQUATIONS; VISCOSITY SOLUTIONS; STOCHASTIC CONTROL; NUMERICAL METHODS;
D O I
10.1051/m2an/1995290100971
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a numerical approximation scheme for the infinite horizon problem related to diffusion processes. The scheme is based on a discrete version of the dynamic programming principle and converges to the viscosity solution of the second order Hamilton-Jacobi-Bellman equation. The diffusion can be degenerate. The problem R(n) is solved in a bounded domain Omega using a truncation technique and without imposing invariance conditions on Omega. We prove explicit estimates of the error due to the truncation technique.
引用
收藏
页码:97 / 122
页数:26
相关论文
共 26 条
[1]  
AKIAN M, 1990, LECT NOTES CONTR INF, V144, P113
[2]   ON THE NUMERICAL APPROXIMATION OF AN OPTIMAL CORRECTION PROBLEM [J].
BANCORAIMBERT, MC ;
CHOW, PL ;
MENALDI, JL .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1988, 9 (06) :970-991
[3]  
Barles G., 1991, Asymptotic Analysis, V4, P271
[4]  
Bertsekas D. P., 1996, NEURO DYNAMIC PROGRA
[5]  
CAMILLI F, UNPUB
[6]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[7]  
DOLCETTA IC, 1989, ANNALES DE LINSTITUT HENRI POINCARE, VOL 6 SUPPL, P161
[8]   A NUMERICAL APPROACH TO THE INFINITE HORIZON PROBLEM OF DETERMINISTIC CONTROL-THEORY [J].
FALCONE, M .
APPLIED MATHEMATICS AND OPTIMIZATION, 1987, 15 (01) :1-13
[9]   DISCRETE-TIME HIGH-ORDER SCHEMES FOR VISCOSITY SOLUTIONS OF HAMILTON-JACOBI-BELLMAN EQUATIONS [J].
FALCONE, M ;
FERRETTI, R .
NUMERISCHE MATHEMATIK, 1994, 67 (03) :315-344
[10]  
FALCONE M, 1985, P INT S NUMERICAL AN