AN APPROXIMATION SCHEME FOR THE OPTIMAL-CONTROL OF DIFFUSION-PROCESSES

被引:97
作者
CAMILLI, F
FALCONE, M
机构
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 1995年 / 29卷 / 01期
关键词
HAMILTON-JACOBI-BELLMAN EQUATIONS; VISCOSITY SOLUTIONS; STOCHASTIC CONTROL; NUMERICAL METHODS;
D O I
10.1051/m2an/1995290100971
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a numerical approximation scheme for the infinite horizon problem related to diffusion processes. The scheme is based on a discrete version of the dynamic programming principle and converges to the viscosity solution of the second order Hamilton-Jacobi-Bellman equation. The diffusion can be degenerate. The problem R(n) is solved in a bounded domain Omega using a truncation technique and without imposing invariance conditions on Omega. We prove explicit estimates of the error due to the truncation technique.
引用
收藏
页码:97 / 122
页数:26
相关论文
共 26 条
[21]   SOME ESTIMATES FOR FINITE-DIFFERENCE APPROXIMATIONS [J].
MENALDI, JL .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1989, 27 (03) :579-607
[23]   APPROXIMATION SCHEMES FOR VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
SOUGANIDIS, PE .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1985, 59 (01) :1-43
[24]   DOMAIN DECOMPOSITION ALGORITHMS FOR SOLVING HAMILTON-JACOBI-BELLMAN EQUATIONS [J].
SUN, M .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1993, 14 (1-2) :145-166
[25]  
[No title captured]
[26]  
[No title captured], DOI https://doi.org/10.1007/bf01442176