A pseudorandom generator from any one-way function

被引:900
作者
Hästad, J
Impagliazzo, R
Levin, LA
Luby, M
机构
[1] Royal Inst Technol, Dept Numer Anal & Comp Sci, S-10044 Stockholm, Sweden
[2] Univ Calif San Diego, Dept Comp Sci, La Jolla, CA 92093 USA
[3] Boston Univ, Dept Comp Sci, Boston, MA 02215 USA
[4] Univ Calif Berkeley, Int Comp Sci Inst, Berkeley, CA 94704 USA
关键词
one-way function; pseudorandom generator; cryptography; complexity theory;
D O I
10.1137/S0097539793244708
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Pseudorandom generators are fundamental to many theoretical and applied aspects of computing. We show how to construct a pseudorandom generator from any one-way function. Since it is easy to construct a one-way function from a pseudorandom generator, this result shows that there is a pseudorandom generator if and only if there is a one-way function.
引用
收藏
页码:1364 / 1396
页数:33
相关论文
共 47 条
[31]  
LEVIN LA, 1993, J SYMBOLIC LOGIC, V58, P1102
[32]   HOW TO CONSTRUCT PSEUDORANDOM PERMUTATIONS FROM PSEUDORANDOM FUNCTIONS [J].
LUBY, M ;
RACKOFF, C .
SIAM JOURNAL ON COMPUTING, 1988, 17 (02) :373-386
[33]  
Luby M., 1996, PRINCETON COMPUTER S
[34]  
McEliece Robert J, 1978, PUBLIC KEY CRYPTOSYS
[35]  
MCINNES J, 1987, 19487 U TOR
[36]  
MOTWANI R., 1995, Randomized Algorithms
[37]  
Naor M., 1991, Journal of Cryptology, V4, P151, DOI 10.1007/BF00196774
[38]  
Naor M., 1989, Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing, P33, DOI 10.1145/73007.73011
[39]  
Ostrovsky R., 1993, Proceedings of the 2nd Israel Symposium on Theory and Computing Systems (Cat. No.93TH0520-7), P3, DOI 10.1109/ISTCS.1993.253489
[40]  
Renyi A., 1970, Probability Theory