Ergodic properties of microcanonical observables

被引:27
作者
Giardina, C [1 ]
Livi, R
机构
[1] Univ Bologna, Dipartmento Fis, I-40126 Bologna, Italy
[2] Ist Nazl Fis Nucl, I-40126 Bologna, Italy
[3] Univ Florence, Ist Nazl Fis Nucl, Dipartimento Fis, I-50125 Florence, Italy
[4] INFM, Unita Firenze, I-40126 Bologna, Italy
关键词
strong stochasticity threshold; ergodic hypothesis; microcanonical ensemble;
D O I
10.1023/A:1023036101468
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The problem of the existence of a strong stochasticity threshold in the FPU-beta model is reconsidered, using suitable microcanonical observables of thermodynamic nature, like the temperature and the specific heat. Explicit expressions for these observables are obtained by exploiting rigorous methods of differential geometry. Measurements of the corresponding temporal autocorrelation functions locate the threshold at a finite value of the energy density, which is independent of the number of degrees of freedom.
引用
收藏
页码:1027 / 1045
页数:19
相关论文
共 25 条
[11]   ENERGY TRANSITIONS AND TIME SCALES TO EQUIPARTITION IN THE FERMI-PASTA-ULAM OSCILLATOR CHAIN [J].
DELUCA, J ;
LICHTENBERG, AJ ;
RUFFO, S .
PHYSICAL REVIEW E, 1995, 51 (04) :2877-2885
[12]   TIME-SCALE TO ERGODICITY IN THE FERMI-PASTA-ULAM SYSTEM [J].
DELUCA, J ;
LICHTENBERG, AJ ;
LIEBERMAN, MA .
CHAOS, 1995, 5 (01) :283-297
[13]  
Fermi E., 1965, COLLECT PAPERS, V2, P78
[14]  
Izrailev F M, 1966, SOV PHYS DOKL, V11, P30
[15]  
Khinchin A. I., 1949, MATH FDN STAT MECH
[16]   ENSEMBLE DEPENDENCE OF FLUCTUATIONS WITH APPLICATION TO MACHINE COMPUTATIONS [J].
LEBOWITZ, JL ;
PERCUS, JK ;
VERLET, L .
PHYSICAL REVIEW, 1967, 153 (01) :250-&
[17]   EQUIPARTITION THRESHOLD IN NONLINEAR LARGE HAMILTONIAN-SYSTEMS - THE FERMI-PASTA-ULAM MODEL [J].
LIVI, R ;
PETTINI, M ;
RUFFO, S ;
SPARPAGLIONE, M ;
VULPIANI, A .
PHYSICAL REVIEW A, 1985, 31 (02) :1039-1045
[18]   FURTHER RESULTS ON THE EQUIPARTITION THRESHOLD IN LARGE NONLINEAR HAMILTONIAN-SYSTEMS [J].
LIVI, R ;
PETTINI, M ;
RUFFO, S ;
VULPIANI, A .
PHYSICAL REVIEW A, 1985, 31 (04) :2740-2742
[19]   GEOMETRICAL HINTS FOR A NONPERTURBATIVE APPROACH TO HAMILTONIAN-DYNAMICS [J].
PETTINI, M .
PHYSICAL REVIEW E, 1993, 47 (02) :828-850
[20]   STRONG STOCHASTICITY THRESHOLD IN NONLINEAR LARGE HAMILTONIAN-SYSTEMS - EFFECT ON MIXING TIMES [J].
PETTINI, M ;
CERRUTISOLA, M .
PHYSICAL REVIEW A, 1991, 44 (02) :975-987