Label-less fluorescence-based method to detect hybridization with applications to DNA micro-array

被引:17
作者
Niu, Sanjun [1 ]
Singh, Gaurav [1 ]
Saraf, Ravi F. [1 ]
机构
[1] Univ Nebraska, Dept Chem Engn, Lincoln, NE 68588 USA
关键词
DNA chip; micro-array; label-free; label-less; DNA scattering; biosensors;
D O I
10.1016/j.bios.2007.08.007
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
By coupling scattered light from DNA to excite fluorescence in a polymer, we describe a quantitative, label-free assay for DNA hybridization detection. Since light scattering is intrinsically proportional to number of molecules, the change in (scattering coupled) fluorescence is highly linear with respect to percent binding of single stranded DNA (ssDNA) target with the immobilized ssDNA probes. The coupling is achieved by immobilizing ssDNA on a fluorescent polymer film at optimum thickness in nanoscale. The fluorescence from the underlining polymer increases due to proportionate increase in scattering from double stranded DNA (dsDNA) (i.e., probe-target binding) compared to ssDNA (i.e., probe). Because the scattering is proportional to fourth power of refractive index, the detection of binding is an order of magnitude more sensitive compared to other label-free optical methods, such as, reflectivity, interference, ellipsometry and surface-plasmon resonance. Remarkably, polystyrene film of optimum thickness 30 nm is the best fluorescent agent since its excitation wavelength matches (within 5 nm) with wavelength for the maximum refractive index difference between ssDNA and dsDNA. A quantitative model (with no fitting parameters) explains the observations. Potential dynamic range is 1 in 10(4) at signal-to-noise ratio of 3: 1. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:714 / 720
页数:7
相关论文
共 46 条
[1]  
[Anonymous], PRINCIPLES OPTICS
[2]   Standardizing global gene expression analysis between laboratories and across platforms [J].
Bammler, T ;
Beyer, RP ;
Bhattacharya, S ;
Boorman, GA ;
Boyles, A ;
Bradford, BU ;
Bumgarner, RE ;
Bushel, PR ;
Chaturvedi, K ;
Choi, D ;
Cunningham, ML ;
Dengs, S ;
Dressman, HK ;
Fannin, RD ;
Farun, FM ;
Freedman, JH ;
Fry, RC ;
Harper, A ;
Humble, MC ;
Hurban, P ;
Kavanagh, TJ ;
Kaufmann, WK ;
Kerr, KF ;
Jing, L ;
Lapidus, JA ;
Lasarev, MR ;
Li, J ;
Li, YJ ;
Lobenhofer, EK ;
Lu, X ;
Malek, RL ;
Milton, S ;
Nagalla, SR ;
O'Malley, JP ;
Palmer, VS ;
Pattee, P ;
Paules, RS ;
Perou, CM ;
Phillips, K ;
Qin, LX ;
Qiu, Y ;
Quigley, SD ;
Rodland, M ;
Rusyn, I ;
Samson, LD ;
Schwartz, DA ;
Shi, Y ;
Shin, JL ;
Sieber, SO ;
Slifer, S .
NATURE METHODS, 2005, 2 (05) :351-356
[3]   A multistep chemical modification procedure to create DNA arrays on gold surfaces for the study of protein-DNA interactions with surface plasmon resonance imaging [J].
Brockman, JM ;
Frutos, AG ;
Corn, RM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (35) :8044-8051
[4]   Quartz crystal microbalance study of DNA immobilization and hybridization for nucleic acid sensor development [J].
Caruso, F ;
Rodda, E ;
Furlong, DF ;
Niikura, K ;
Okahata, Y .
ANALYTICAL CHEMISTRY, 1997, 69 (11) :2043-2049
[5]   High surface density immobilization of oligonucleotide on silicon [J].
Cavic, BA ;
McGovern, ME ;
Nisman, R ;
Thompson, M .
ANALYST, 2001, 126 (04) :485-490
[6]   One-step homogeneous detection of DNA hybridization with gold nanoparticle probes by using a linear light-scattering technique [J].
Du, Bao-An ;
Li, Zheng-Ping ;
Liu, Cheng-Hui .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (47) :8022-8025
[7]   Optical properties of an immobilized DNA monolayer from 255 to 700 nm [J].
Elhadj, S ;
Singh, G ;
Saraf, RF .
LANGMUIR, 2004, 20 (13) :5539-5543
[8]   Surface plasmon resonance: principles, methods and applications in biomedical sciences [J].
Englebienne, P ;
Van Hoonacker, A ;
Verhas, M .
SPECTROSCOPY-AN INTERNATIONAL JOURNAL, 2003, 17 (2-3) :255-273
[9]  
Fishman DM, 1996, BIOPOLYMERS, V38, P535, DOI 10.1002/(SICI)1097-0282(199604)38:4<535::AID-BIP9>3.3.CO
[10]  
2-H