LP-theory for a class of non-newtonian fluids

被引:73
作者
Bothe, Dieter
Pruess, Jan
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math, Ctr Computat Engn Sci, D-52074 Aachen, Germany
[2] Univ Halle Wittenberg, Fachbereich Math & Informat, Inst Anal, D-06120 Halle, Germany
关键词
maximal regularity; non-Newtonian fluids; L-p-theory; R-boundedness; initial boundary value problems; power-law -like fluids; strong ellipticity; Lopatinskii-Shapiro condition;
D O I
10.1137/060663635
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Local-in-time well-posedness of the initial-boundary value problem for a class of non-Newtonian Navier-Stokes problems on domains with compact C3-- boundary is proven in an L-p-setting for any space dimension n >= 2. The stress tensor is assumed to be of the generalized Newtonian type, i.e., S = 2 mu(vertical bar epsilon vertical bar(2)(2))epsilon - pi I, epsilon = 1/2 (del u + del u(T)), where vertical bar epsilon vertical bar(2)(2) = Sigma(n)(i, j=1) epsilon(2)(ij) denotes the Hilbert - Schmidt norm of the rate of strain tensor epsilon. The viscosity function mu is an element of C2-(R+) is subject only to the condition mu(s) > 0, mu(s) + 2s mu'(s) > 0, s >= 0, which for the standard power-law-like function mu(s) = mu(0)(1 + s) (d-2/2) merely means mu(0) > 0 and d >= 1. This result is based on maximal regularity theory for a suitable linear problem and a contraction argument.
引用
收藏
页码:379 / 421
页数:43
相关论文
共 25 条
[1]   STABILITY OF THE REST STATE OF A VISCOUS INCOMPRESSIBLE FLUID [J].
AMANN, H .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 126 (03) :231-242
[2]  
Bird R. B., 1977, Dynamics of Polymeric Liquids, V1
[3]  
Clement P., 1993, Advances in Mathematical Sciences and Applications, V3, P17
[4]  
Denk R, 2003, MEM AM MATH SOC, V166, P1
[5]  
DENK R, IN PRESS MATH Z
[6]   Strong solutions for generalized Newtonian fluids [J].
Diening, L ;
Ruzicka, M .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2005, 7 (03) :413-450
[7]  
ESCHER J, ANAL VISCOUS INCOMPR
[8]   On analysis of steady flows of fluids with shear-dependent viscosity based on the Lipschitz truncation method [J].
Frehse, J ;
Málek, J ;
Steinhauer, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2003, 34 (05) :1064-1083
[9]  
Frehse J, 2000, CH CRC RES NOTES, V406, P121
[10]  
Girardi M., 2003, LECT NOTES PURE APPL, V234, P203