Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast cultures reveals post-transcriptional regulation of key cellular processes

被引:92
作者
de Groot, Marco J. L.
Daran-Lapujade, Pascale
van Breukelen, Bas
Knijnenburg, Theo A.
de Hulster, Erik A. F.
Reinders, Marcel J. T.
Pronk, Jack T.
Heck, Albert J. R.
Slijper, Monique
机构
[1] Univ Utrecht, Dept Biomol Mass Spectrometry, Bijvoet Ctr Biomol Res, NL-3584 CA Utrecht, Netherlands
[2] Univ Utrecht, Utrecht Inst Pharmaceut Sci, NL-3584 CA Utrecht, Netherlands
[3] Delft Univ Technol, Dept Biotechnol, NL-2628 BC Delft, Netherlands
[4] Delft Univ Technol, Fac Elect Engn Math & Comp Sci, Informat & Commun Theory Grp, NL-2628 CD Delft, Netherlands
[5] Netherlands Proteom Ctr, Delft, Netherlands
来源
MICROBIOLOGY-SGM | 2007年 / 153卷
关键词
D O I
10.1099/mic.0.2007/009969-0
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Saccharomyces cerevisiae is unique among yeasts in its ability to grow rapidly in the complete absence of oxygen. S. cerevisiae is therefore an ideal eukaryotic model to study physiological adaptation to anaerobiosis. Recent transcriptome analyses have identified hundreds of genes that are transcriptionally regulated by oxygen availability but the relevance of this cellular response has not been systematically investigated at the key control level of the proteome. Therefore, the proteomic response of S. cerevisiae to anaerobiosis was investigated using metabolic stable-isotope labelling in aerobic and anaerobic glucose-limited chemostat cultures, followed by relative quantification of protein expression. Using independent replicate cultures and stringent statistical filtering, a robust dataset of 474 quantified proteins was generated, of which 249 showed differential expression levels. While some of these changes were consistent with previous transcriptome studies, many of the responses of S. cerevisiae to oxygen availability were, to our knowledge, previously unreported. Comparison of transcriptomes and proteomes from identical cultivations yielded strong evidence for post-transcriptional regulation of key cellular processes, including glycolysis, amino-acyl-tRNA synthesis, purine nucleotide synthesis and amino acid biosynthesis. The use of chemostat cultures provided well-controlled and reproducible culture conditions, which are essential for generating robust datasets at different cellular information levels. Integration of transcriptome and proteome data led to new insights into the physiology of anaerobically growing yeast that would not have been apparent from differential analyses at either the mRNA or protein level alone, thus illustrating the power of multi-level studies in yeast systems biology.
引用
收藏
页码:3864 / 3878
页数:15
相关论文
共 67 条
[41]   Reproducibility of oligonucleotide microarray transcriptome analyses -: An interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiae [J].
Piper, MDW ;
Daran-Lapujade, P ;
Bro, C ;
Regenberg, B ;
Knudsen, S ;
Nielsen, J ;
Pronk, JT .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (40) :37001-37008
[42]   ENZYMIC CONVERSION OF COPROPORPHYRINOGEN 3 INTO PROTOPORPHYRIN 9 [J].
PORRA, RJ ;
FALK, JE .
BIOCHEMICAL JOURNAL, 1964, 90 (01) :69-&
[43]   ENZYMIC ANALYSIS OF THE CRABTREE EFFECT IN GLUCOSE-LIMITED CHEMOSTAT CULTURES OF SACCHAROMYCES-CEREVISIAE [J].
POSTMA, E ;
VERDUYN, C ;
SCHEFFERS, WA ;
VANDIJKEN, JP .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1989, 55 (02) :468-477
[44]   Integrative analysis of the mitochondrial proteome in yeast [J].
Prokisch, H ;
Scharfe, C ;
Camp, DG ;
Xiao, WZ ;
David, L ;
Andreoli, C ;
Monroe, ME ;
Moore, RJ ;
Gritsenko, MA ;
Kozany, C ;
Hixson, KK ;
Mottaz, HM ;
Zischka, H ;
Ueffing, M ;
Herman, ZS ;
Davis, RW ;
Meitinger, T ;
Oefner, PJ ;
Smith, RD ;
Steinmetz, LM .
PLOS BIOLOGY, 2004, 2 (06) :795-804
[45]   AMINOACYL-TRANSFER-RNA SYNTHETASE GENE-REGULATION IN BACILLUS-SUBTILIS - INDUCTION, REPRESSION AND GROWTH-RATE REGULATION [J].
PUTZER, H ;
LAALAMI, S ;
BRAKHAGE, AA ;
CONDON, C ;
GRUNBERGMANAGO, M .
MOLECULAR MICROBIOLOGY, 1995, 16 (04) :709-718
[46]   The expression of E-coli threonyl-tRNA synthetase is regulated at the translational level by symmetrical operator-repressor interactions [J].
Romby, P ;
Caillet, J ;
Ebel, C ;
Sacerdot, C ;
Graffe, M ;
Eyermann, F ;
Brunel, C ;
Moine, H ;
Ehresmann, C ;
Ehresmann, B ;
Springer, M .
EMBO JOURNAL, 1996, 15 (21) :5976-5987
[47]   Role of the non-respiratory pathways in the utilization of molecular oxygen by Saccharomyces cerevisiae [J].
Rosenfeld, E ;
Beauvoit, B .
YEAST, 2003, 20 (13) :1115-1144
[48]   BIOSYNTHESIS OF CATALASE [J].
RUIS, H .
CANADIAN JOURNAL OF BIOCHEMISTRY, 1979, 57 (09) :1122-1130
[49]   SUBCELLULAR LOCALIZATION OF LEUCINE BIOSYNTHETIC ENZYMES IN YEAST [J].
RYAN, ED ;
TRACY, JW ;
KOHLHAW, GB .
JOURNAL OF BACTERIOLOGY, 1973, 116 (01) :222-225
[50]   Yeast tRNAAsp charging accuracy is threatened by the N-terminal extension of aspartyl-tRNA synthetase [J].
Ryckelynck, M ;
Giegé, R ;
Frugier, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (11) :9683-9690