DNA transposons in vertebrate functional genomics

被引:85
作者
Miskey, C
Izsvák, Z
Kawakami, K
Ivics, Z
机构
[1] Max Delbruck Ctr Mol Med, D-13092 Berlin, Germany
[2] Hungarian Acad Sci, Biol Res Ctr, Inst Biochem, Szeged, Hungary
[3] Natl Inst Genet, Div Mol & Dev Biol, Mishima, Shizuoka 411, Japan
关键词
transposon; mutagenesis; transgenesis; functional genomics; gene trapping; zebrafish; mouse;
D O I
10.1007/s00018-004-4232-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Genome sequences of many model organisms of developmental or agricultural importance are becoming available. The tremendous amount of sequence data is fuelling the next phases of challenging research: annotating all genes with functional information, and devising new ways for the experimental manipulation of vertebrate genomes. Transposable elements are known to be efficient carriers of foreign DNA into cells. Notably, members of the Tc1/mariner and the hAT transposon families retain their high transpositional activities in species other than their hosts. Indeed, several of these elements have been successfully used for trans- genesis and insertional mutagenesis, expanding our abilities in genome manipulations in vertebrate model organisms. Transposon-based genetic tools can help scientists to understand mechanisms of embryonic development and pathogenesis, and will likely contribute to successful human gene therapy. We discuss the possibilities of transposon-based techniques in functional genomics, and review the latest results achieved by the most active DNA transposons in vertebrates. We put emphasis on the evolution and regulation of members of the best-characterized and most widely used Tc1/mariner family.
引用
收藏
页码:629 / 641
页数:13
相关论文
共 91 条
[1]   THE AEQUOREA-VICTORIA GREEN FLUORESCENT PROTEIN CAN BE USED AS A REPORTER IN LIVE ZEBRAFISH EMBRYOS [J].
AMSTERDAM, A ;
LIN, S ;
HOPKINS, N .
DEVELOPMENTAL BIOLOGY, 1995, 171 (01) :123-129
[2]   A large-scale insertional mutagenesis screen in zebrafish [J].
Amsterdam, A ;
Burgess, S ;
Golling, G ;
Chen, WB ;
Sun, ZX ;
Townsend, K ;
Farrington, S ;
Haldi, M ;
Hopkins, N .
GENES & DEVELOPMENT, 1999, 13 (20) :2713-2724
[3]   TRANSGENIC MICE [J].
BABINET, C ;
MORELLO, D ;
RENARD, JP .
GENOME, 1989, 31 (02) :938-949
[4]   Targeting survival: Integration site selection by retroviruses and LTR-retrotransposons [J].
Bushman, FD .
CELL, 2003, 115 (02) :135-138
[5]  
Bustin M, 1999, MOL CELL BIOL, V19, P5237
[6]   EVIDENCE FOR A COMMON EVOLUTIONARY ORIGIN OF INVERTED REPEAT TRANSPOSONS IN DROSOPHILA AND PLANTS - HOBO, ACTIVATOR, AND TAM3 [J].
CALVI, BR ;
HONG, TJ ;
FINDLEY, SD ;
GELBART, WM .
CELL, 1991, 66 (03) :465-471
[7]  
Carlson CM, 2003, GENETICS, V165, P243
[8]   Transposon vectors for gene-trap insertional mutagenesis in vertebrates [J].
Clark, KJ ;
Geurts, AM ;
Bell, JB ;
Hackett, PB .
GENESIS, 2004, 39 (04) :225-233
[9]   Structure-function analysis of the inverted terminal repeats of the Sleeping Beauty transposon [J].
Cui, ZB ;
Geurts, AM ;
Liu, GY ;
Kaufman, CD ;
Hackett, PB .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 318 (05) :1221-1235
[10]   Efficient gene delivery and gene expression in zebrafish using the Sleeping Beauty transposon [J].
Davidson, AE ;
Balciunas, D ;
Mohn, D ;
Shaffer, J ;
Hermanson, S ;
Sivasubbu, S ;
Cliff, MP ;
Hackett, PB ;
Ekker, SC .
DEVELOPMENTAL BIOLOGY, 2003, 263 (02) :191-202