Free energy functional for nonequilibrium systems: An exactly solvable case

被引:138
作者
Derrida, B
Lebowitz, JL
Speer, ER
机构
[1] Lab Phys Stat, F-75231 Paris 05, France
[2] Rutgers State Univ, Dept Math, New Brunswick, NJ 08903 USA
[3] Rutgers State Univ, Dept Phys, New Brunswick, NJ 08903 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.87.150601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the steady state of an open system in which there is a flux of matter between two reservoirs at different chemical potentials. For a large system of size N, the probability of any macroscopic density profile rho (x) is exp[-N F({rho})]; F thus generalizes to nonequilibrium systems the notion of free energy density for equilibrium systems. Our exact expression for F is a nonlocal functional of rho, which yields the macroscopically long range correlations in the nonequilibrium steady state previously predicted by fluctuating hydrodynamics and observed experimentally.
引用
收藏
页码:150601 / 150601
页数:4
相关论文
共 21 条
[1]  
[Anonymous], 1999, SCALING LIMITS INTER, DOI DOI 10.1007/978-3-662-03752-2
[2]   Fluctuations in stationary nonequilibrium states of irreversible processes [J].
Bertini, L ;
De Sole, A ;
Gabrielli, D ;
Jona-Lasinio, G ;
Landim, C .
PHYSICAL REVIEW LETTERS, 2001, 87 (04) :40601-1
[3]   Exact solution of a partially asymmetric exclusion model using a deformed oscillator algebra [J].
Blythe, RA ;
Evans, MR ;
Colaiori, F ;
Essler, FHL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (12) :2313-2332
[4]   Exact large deviation function in the asymmetric exclusion process [J].
Derrida, B ;
Lebowitz, JL .
PHYSICAL REVIEW LETTERS, 1998, 80 (02) :209-213
[5]   EXACT SOLUTION OF A 1D ASYMMETRIC EXCLUSION MODEL USING A MATRIX FORMULATION [J].
DERRIDA, B ;
EVANS, MR ;
HAKIM, V ;
PASQUIER, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (07) :1493-1517
[6]  
DERRIDA B, IN PRESS
[7]   GENERIC LONG-RANGE CORRELATIONS IN MOLECULAR FLUIDS [J].
DORFMAN, JR ;
KIRKPATRICK, TR ;
SENGERS, JV .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1994, 45 :213-239
[8]   Representations of the quadratic algebra and partially asymmetric diffusion with open boundaries [J].
Essler, FHL ;
Rittenberg, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (13) :3375-3407
[9]   HYDRODYNAMICS OF STATIONARY NONEQUILIBRIUM STATES FOR SOME STOCHASTIC LATTICE GAS MODELS [J].
EYINK, G ;
LEBOWITZ, JL ;
SPOHN, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 132 (01) :253-283
[10]   LATTICE GAS MODELS IN CONTACT WITH STOCHASTIC RESERVOIRS - LOCAL EQUILIBRIUM AND RELAXATION TO THE STEADY-STATE [J].
EYINK, G ;
LEBOWITZ, JL ;
SPOHN, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 140 (01) :119-131