Understanding individual human mobility patterns

被引:4101
作者
Gonzalez, Marta C. [1 ,2 ]
Hidalgo, Cesar A. [1 ,2 ,3 ,4 ]
Barabasi, Albert-Laszlo [1 ,2 ,3 ,4 ,5 ]
机构
[1] Northeastern Univ, Ctr Complex Network Res, Boston, MA 02115 USA
[2] Northeastern Univ, Dept Phys Biol & Comp Sci, Boston, MA 02115 USA
[3] Univ Notre Dame, Ctr Complex Network Res, Notre Dame, IN 46556 USA
[4] Univ Notre Dame, Dept Phys & Comp Sci, Notre Dame, IN 46556 USA
[5] Dana Farber Canc Inst, Ctr Canc Syst Biol, Boston, MA 02115 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/nature06958
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Despite their importance for urban planning(1), traffic forecasting(2) and the spread of biological(3-5) and mobile viruses(6), our understanding of the basic laws governing human motion remains limited owing to the lack of tools to monitor the time- resolved location of individuals. Here we study the trajectory of 100,000 anonymized mobile phone users whose position is tracked for a six- month period. We find that, in contrast with the random trajectories predicted by the prevailing Levy flight and random walk models(7), human trajectories show a high degree of temporal and spatial regularity, each individual being characterized by a time-independent characteristic travel distance and a significant probability to return to a few highly frequented locations. After correcting for differences in travel distances and the inherent anisotropy of each trajectory, the individual travel patterns collapse into a single spatial probability distribution, indicating that, despite the diversity of their travel history, humans follow simple reproducible patterns. This inherent similarity in travel patterns could impact all phenomena driven by human mobility, from epidemic prevention to emergency response, urban planning and agent- based modelling.
引用
收藏
页码:779 / 782
页数:4
相关论文
共 30 条
[1]   The origin of bursts and heavy tails in human dynamics [J].
Barabási, AL .
NATURE, 2005, 435 (7039) :207-211
[2]   The scaling laws of human travel [J].
Brockmann, D ;
Hufnagel, L ;
Geisel, T .
NATURE, 2006, 439 (7075) :462-465
[3]  
Caldarelli G., 2007, Scale-free networks: complex webs in nature and technology
[4]   Diffusion, peer pressure, and tailed distributions [J].
Cecconi, F ;
Marsili, M ;
Banavar, JR ;
Maritan, A .
PHYSICAL REVIEW LETTERS, 2002, 89 (08) :088102/1-088102/4
[5]   Modeling the worldwide spread of pandemic influenza: Baseline case and containment interventions [J].
Colizza, Vittoria ;
Barrat, Alain ;
Barthelemy, Marc ;
Valleron, Alain-Jacques ;
Vespignani, Alessandro .
PLOS MEDICINE, 2007, 4 (01) :95-110
[6]   First-passage times in complex scale-invariant media [J].
Condamin, S. ;
Benichou, O. ;
Tejedor, V. ;
Voituriez, R. ;
Klafter, J. .
NATURE, 2007, 450 (7166) :77-80
[7]   Evolution of networks [J].
Dorogovtsev, SN ;
Mendes, JFF .
ADVANCES IN PHYSICS, 2002, 51 (04) :1079-1187
[8]  
EAGLE N, IN PRESS BEHAV ECOL
[9]   Revisiting Levy flight search patterns of wandering albatrosses, bumblebees and deer [J].
Edwards, Andrew M. ;
Phillips, Richard A. ;
Watkins, Nicholas W. ;
Freeman, Mervyn P. ;
Murphy, Eugene J. ;
Afanasyev, Vsevolod ;
Buldyrev, Sergey V. ;
da Luz, M. G. E. ;
Raposo, E. P. ;
Stanley, H. Eugene ;
Viswanathan, Gandhimohan M. .
NATURE, 2007, 449 (7165) :1044-U5
[10]   Modelling disease outbreaks in realistic urban social networks [J].
Eubank, S ;
Guclu, H ;
Kumar, VSA ;
Marathe, MV ;
Srinivasan, A ;
Toroczkai, Z ;
Wang, N .
NATURE, 2004, 429 (6988) :180-184