Convergence of finite volume schemes for semilinear convection diffusion equations

被引:40
作者
Eymard, R [1 ]
Gallouët, T
Herbin, R
机构
[1] Ecole Natl Ponts & Chaussees, Marne La Vallee, France
[2] Univ Aix Marseille 1, Marseille, France
关键词
D O I
10.1007/s002110050412
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The topic of this work is the discretization of semilinear elliptic problems in two space dimensions by the cell centered finite volume method. Dirichlet boundary conditions are considered here. A discrete Poincare inequality is used, and estimates on the approximate solutions are proven. The convergence of the scheme without any assumption on the regularity of the exact solution is proven using some compactness results which are shown to hold for the approximate solutions. Mathematics Subject Classification (1991): 65N12.
引用
收藏
页码:91 / 116
页数:26
相关论文
共 26 条
[1]  
[Anonymous], E W J NUMER MATH
[2]   SOME ERROR-ESTIMATES FOR THE BOX METHOD [J].
BANK, RE ;
ROSE, DJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) :777-787
[3]  
Baranger J, 1996, ESAIM-MATH MODEL NUM, V30, P445
[4]  
CAI ZQ, 1991, NUMER MATH, V58, P713
[5]   THE FINITE VOLUME ELEMENT METHOD FOR DIFFUSION-EQUATIONS ON GENERAL TRIANGULATIONS [J].
CAI, ZQ ;
MANDEL, J ;
MCCORMICK, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (02) :392-402
[6]  
COUDIERE Y, FINITE VOLUMES COMPL, P161
[7]  
Deimling K., 1985, NONLINEAR FUNCTIONAL
[8]   CONVERGENCE OF A FINITE ELEMENT-FINITE VOLUME SCHEME FOR COUPLED ELLIPTIC PARABOLIC EQUATIONS [J].
EYMARD, R ;
GALLOUET, T .
RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1993, 27 (07) :843-861
[9]  
EYMARD R, IN PRESS HDB NUMERIC
[10]   A CONTROL VOLUME METHOD TO SOLVE AN ELLIPTIC EQUATION ON A 2-DIMENSIONAL IRREGULAR MESH [J].
FAILLE, I .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1992, 100 (02) :275-290