Kinetics of azoreductase and assessment of toxicity of metabolic products from azo dyes by Pseudomonas luteola

被引:93
作者
Hu, TL [1 ]
机构
[1] Feng Chia Univ, Dept Environm Engn & Sci, Taichung, Taiwan
关键词
azoreductase; competitive inhibition; EC50; Microtox (R);
D O I
10.2166/wst.2001.0098
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This is a continuous study on a decolorization strain, Pseudomonas luteola, which involves treating seven azo dyes with different structures. This study focuses mainly on determining both the mechanism of decolorization by P, luteola and the activity of azoreductase from P. luteola as well as identifying and assessing the toxicity of metabolic products of azo dyes. The growth of P. luteola reached the stationary phase after shaking incubation for 24 hours. Then, while being kept static, the color of seven tested azo dyes (100 mg/l) could be removed. The proportion of color removal was between 59-99%, which figure is related to the structure of the dye. Monoazo dyes (RP2B, V2RP and Red 22) showed the fastest rate of decolorization, i.e, from 0.23-0.44 mg dye-mg cell(-1) hr(-1). P. luteola could remove the color of V2RP and a leather dye at a concentration of 200 mg/l, and as to the rest of the azo dyes, it could remove at a concentration of up to 100 mg/l. Decolorization of RP2B and Red 22 required activation energy of 7.00 J/mol and 6.63 J/mole, respectively, indicating that it was easier for azoreductase to decolorize structurally simple dyes. The kinetics of azoreductase towards seven azo dyes suggested a competitive inhibition model be applied. Microtox(R) was used to analyze the toxicity of the metabolic products of azo dyes. ECS, showed differences in toxicity before and after the azo dyes had been metabolized. Analysis revealed significant differences between the results obtained by EC50 with Blue 15 and those obtained with the feather dye, indicating that the toxicities of the metabolic products were increased. The differences obtained by EC50 with Red 22, RP2P and V2RP were small, and Black 22 showed no such difference Sulfanic acid and orthanilic acid may be the intermediate products of Violet 9 and RP2B, respectively. However, according to FT-IR analysis, aromatic amines were present in the metabolic product.
引用
收藏
页码:261 / 269
页数:9
相关论文
共 24 条
[1]   Microbial decolorization of textile-dye-containing effluents: A review [J].
Banat, IM ;
Nigam, P ;
Singh, D ;
Marchant, R .
BIORESOURCE TECHNOLOGY, 1996, 58 (03) :217-227
[2]   TRANSFORMATION OF DYES AND RELATED-COMPOUNDS IN ANOXIC SEDIMENT - KINETICS AND PRODUCTS [J].
BAUGHMAN, GL ;
WEBER, EJ .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1994, 28 (02) :267-276
[3]   METABOLISM OF AZO DYES DERIVED FROM BENZIDINE, 3,3'-DIMETHYL-BENZIDINE AND 3,3'-DIMETHOXYBENZIDINE TO POTENTIALLY CARCINOGENIC AROMATIC-AMINES BY INTESTINAL BACTERIA [J].
CERNIGLIA, CE ;
FREEMAN, JP ;
FRANKLIN, W ;
PACK, LD .
CARCINOGENESIS, 1982, 3 (11) :1255-1260
[4]  
Chung K.T., 1978, APPL ENVIRON MICROB, V35, P175
[5]   DEGRADATION OF AZO DYES BY ENVIRONMENTAL MICROORGANISMS AND HELMINTHS [J].
CHUNG, KT ;
STEVENS, SE .
ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 1993, 12 (11) :2121-2132
[6]   AZOREDUCTASE ACTIVITY IN BACTERIA ASSOCIATED WITH THE GREENING OF INSTANT CHOCOLATE PUDDINGS [J].
DYKES, GA ;
TIMM, RG ;
VONHOLY, A .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1994, 60 (08) :3027-3029
[7]  
GHOSH DK, 1992, FEMS MICROBIOL LETT, V98, P229, DOI 10.1016/0378-1097(92)90161-G
[8]   Degradation of azo dye RP2B by Pseudomonas luteola [J].
Hu, TL .
WATER SCIENCE AND TECHNOLOGY, 1998, 38 (4-5) :299-306
[9]   DECOLOURIZATION OF REACTIVE AZO DYES BY TRANSFORMATION WITH PSEUDOMONAS-LUTEOLA [J].
HU, TL .
BIORESOURCE TECHNOLOGY, 1994, 49 (01) :47-51
[10]   DEGRADATIVE PATHWAY OF PARA-AMINOAZOBENZENE BY BACILLUS-SUBTILIS [J].
IDAKA, E ;
OGAWA, T ;
HORITSU, H ;
YATOME, C .
EUROPEAN JOURNAL OF APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1982, 15 (02) :141-143