The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates

被引:512
作者
Zoetendal, Erwin G. [1 ,2 ]
Raes, Jeroen [3 ,4 ]
van den Bogert, Bartholomeus [1 ,2 ]
Arumugam, Manimozhiyan [3 ]
Booijink, Carien C. G. M. [1 ,2 ]
Troost, Freddy J. [2 ,5 ]
Bork, Peer [3 ]
Wels, Michiel [2 ,6 ,7 ]
de Vos, Willem M. [1 ,2 ]
Kleerebezem, Michiel [1 ,2 ,6 ,8 ]
机构
[1] Wageningen Univ, Microbiol Lab, NL-6703 HB Wageningen, Netherlands
[2] TI Food & Nutr, Wageningen, Netherlands
[3] European Mol Biol Lab, Heidelberg, Germany
[4] Vrije Univ Brussel VIB, Dept Mol & Cell Interact, B-1050 Brussels, Belgium
[5] Maastricht Univ, Med Ctr, Dept Internal Med, Div Gastroenterol & Hepatol, Maastricht, Netherlands
[6] NIZO Food Res BV, Ede, Netherlands
[7] Radboud Univ Nijmegen, Med Ctr, Ctr Mol & Biomol Informat, NL-6525 ED Nijmegen, Netherlands
[8] Wageningen Univ, Host Microbe Interact Grp, NL-6703 HB Wageningen, Netherlands
关键词
ecological model; function; microbiota; phylogeny; small intestine; HUMAN GASTROINTESTINAL-TRACT; FRAGMENT-LENGTH-POLYMORPHISM; GUT MICROBIOME; BACTERIAL DIVERSITY; MICROARRAY ANALYSIS; SEQUENCE DATA; HUMAN ILEAL; SAMPLES; TWINS; MUCOSA;
D O I
10.1038/ismej.2011.212
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The human gastrointestinal tract (GI tract) harbors a complex community of microbes. The microbiota composition varies between different locations in the GI tract, but most studies focus on the fecal microbiota, and that inhabiting the colonic mucosa. Consequently, little is known about the microbiota at other parts of the GI tract, which is especially true for the small intestine because of its limited accessibility. Here we deduce an ecological model of the microbiota composition and function in the small intestine, using complementing culture-independent approaches. Phylogenetic microarray analyses demonstrated that microbiota compositions that are typically found in effluent samples from ileostomists (subjects without a colon) can also be encountered in the small intestine of healthy individuals. Phylogenetic mapping of small intestinal metagenome of three different ileostomy effluent samples from a single individual indicated that Streptococcus sp., Escherichia coli, Clostridium sp. and high G+C organisms are most abundant in the small intestine. The compositions of these populations fluctuated in time and correlated to the short-chain fatty acids profiles that were determined in parallel. Comparative functional analysis with fecal metagenomes identified functions that are overrepresented in the small intestine, including simple carbohydrate transport phosphotransferase systems (PTS), central metabolism and biotin production. Moreover, metatranscriptome analysis supported high level in-situ expression of PTS and carbohydrate metabolic genes, especially those belonging to Streptococcus sp. Overall, our findings suggest that rapid uptake and fermentation of available carbohydrates contribute to maintaining the microbiota in the human small intestine. The ISME Journal (2012) 6, 1415-1426; doi:10.1038/ismej.2011.212; published online 19 January 2012
引用
收藏
页码:1415 / 1426
页数:12
相关论文
共 55 条
[31]   LACTATE METABOLISM BY VEILLONELLA-PARVULA [J].
NG, SKC ;
HAMILTON, IR .
JOURNAL OF BACTERIOLOGY, 1971, 105 (03) :999-&
[32]   Quenching of microbial samples for increased reliability of microarray data [J].
Pieterse, B ;
Jellema, RH ;
van der Werf, MJ .
JOURNAL OF MICROBIOLOGICAL METHODS, 2006, 64 (02) :207-216
[33]  
Pryde SE, 2002, FEMS MICROBIOL LETT, V217, P133, DOI 10.1111/j.1574-6968.2002.tb11467.x
[34]   A human gut microbial gene catalogue established by metagenomic sequencing [J].
Qin, Junjie ;
Li, Ruiqiang ;
Raes, Jeroen ;
Arumugam, Manimozhiyan ;
Burgdorf, Kristoffer Solvsten ;
Manichanh, Chaysavanh ;
Nielsen, Trine ;
Pons, Nicolas ;
Levenez, Florence ;
Yamada, Takuji ;
Mende, Daniel R. ;
Li, Junhua ;
Xu, Junming ;
Li, Shaochuan ;
Li, Dongfang ;
Cao, Jianjun ;
Wang, Bo ;
Liang, Huiqing ;
Zheng, Huisong ;
Xie, Yinlong ;
Tap, Julien ;
Lepage, Patricia ;
Bertalan, Marcelo ;
Batto, Jean-Michel ;
Hansen, Torben ;
Le Paslier, Denis ;
Linneberg, Allan ;
Nielsen, H. Bjorn ;
Pelletier, Eric ;
Renault, Pierre ;
Sicheritz-Ponten, Thomas ;
Turner, Keith ;
Zhu, Hongmei ;
Yu, Chang ;
Li, Shengting ;
Jian, Min ;
Zhou, Yan ;
Li, Yingrui ;
Zhang, Xiuqing ;
Li, Songgang ;
Qin, Nan ;
Yang, Huanming ;
Wang, Jian ;
Brunak, Soren ;
Dore, Joel ;
Guarner, Francisco ;
Kristiansen, Karsten ;
Pedersen, Oluf ;
Parkhill, Julian ;
Weissenbach, Jean .
NATURE, 2010, 464 (7285) :59-U70
[35]   Systems microbiology - Timeline - Molecular eco-systems biology: towards an understanding of community function [J].
Raes, Jeroen ;
Bork, Peer .
NATURE REVIEWS MICROBIOLOGY, 2008, 6 (09) :693-699
[36]   Get the most out of your metagenome: computational analysis of environmental sequence data [J].
Raes, Jeroen ;
Foerstner, Konrad Ulrich ;
Bork, Peer .
CURRENT OPINION IN MICROBIOLOGY, 2007, 10 (05) :490-498
[37]   Diversity of the human gastrointestinal tract microbiota revisited [J].
Rajilic-Stojanovic, Mirjana ;
Smidt, Hauke ;
de Vos, Willem M. .
ENVIRONMENTAL MICROBIOLOGY, 2007, 9 (09) :2125-2136
[38]   Development and application of the human intestinal tract chip, a phylogenetic microarray: analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults [J].
Rajilic-Stojanovic, Mirjana ;
Heilig, Hans G. H. J. ;
Molenaar, Douwe ;
Kajander, Kajsa ;
Surakka, Anu ;
Smidt, Hauke ;
de Vos, Willem M. .
ENVIRONMENTAL MICROBIOLOGY, 2009, 11 (07) :1736-1751
[39]   Viruses in the faecal microbiota of monozygotic twins and their mothers [J].
Reyes, Alejandro ;
Haynes, Matthew ;
Hanson, Nicole ;
Angly, Florent E. ;
Heath, Andrew C. ;
Rohwer, Forest ;
Gordon, Jeffrey I. .
NATURE, 2010, 466 (7304) :334-U81
[40]   OPINION Explaining microbial population genomics through phage predation [J].
Rodriguez-Valera, Francisco ;
Martin-Cuadrado, Ana-Belen ;
Rodriguez-Brito, Beltran ;
Pasic, Lejla ;
Thingstad, T. Frede ;
Rohwer, Forest ;
Mira, Alex .
NATURE REVIEWS MICROBIOLOGY, 2009, 7 (11) :828-836