Functional specificity of human premotor-motor cortical interactions during action selection

被引:116
作者
O'Shea, Jacinta
Sebastian, Catherine
Boorman, Erie D.
Johansen-Berg, Heidi
Rushworth, Matthew F. S.
机构
[1] Univ Oxford, Dept Expt Psychol, Oxford OX1 3UD, England
[2] Univ Oxford, John Radcliffe Hosp, FMRIB Ctr, Oxford OX1 3UD, England
基金
英国医学研究理事会; 英国惠康基金;
关键词
action selection; cortico-cortical interactions; dorsal premotor cortex; functional connectivity; motor cortex; TMS;
D O I
10.1111/j.1460-9568.2007.05795.x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Functional connections between dorsal premotor cortex (PMd) and primary motor cortex (M1) have been revealed by paired-pulse transcranial magnetic stimulation (TMS). We tested if such connections would be modulated during a cognitive process (response selection) known to rely on those circuits. PMd-M1 TMS applied 75 ms after a cue to select a manual response facilitated motor-evoked potentials (MEPs). MEPs were facilitated at 50 ms in a control task of response execution, suggesting that PMd-M1 interactions at 75 ms are functionally specific to the process of response selection. At 100 ms, PMd-M1 TMS delayed choice reaction time (RT). Importantly, the MEP (at 75 ms) and the RT (at 100 ms) effects were correlated in a way that was hand-specific. When the response was made with the M1-contralateral hand, MEPs correlated with slower RTs. When the response was made with the M1-ipsilateral hand, MEPs correlated with faster RTs. Paired-pulse TMS confined to M1 did not produce these effects, confirming the causal influence of PMd inputs. This study shows that a response selection signal evolves in PMd early during the reaction period (75-100 ms), impacts on M1 and affects behaviour. Such interactions are temporally, anatomically and functionally specific, and have a causal role in choosing which movement to make.
引用
收藏
页码:2085 / 2095
页数:11
相关论文
共 56 条
[11]   Neural activity in primary motor and dorsal premotor cortex in reaching tasks with the contralateral versus ipsilateral arm [J].
Cisek, P ;
Crammond, DJ ;
Kalaska, JF .
JOURNAL OF NEUROPHYSIOLOGY, 2003, 89 (02) :922-942
[12]   Neural correlates of reaching decisions in dorsal premotor cortex: Specification of multiple direction choices and final selection of action [J].
Cisek, P ;
Kalaska, JF .
NEURON, 2005, 45 (05) :801-814
[13]   Transcranial magnetic stimulation can be used to test connections to primary motor areas from frontal and medial cortex in humans [J].
Civardi, C ;
Cantello, R ;
Asselman, P ;
Rothwell, JC .
NEUROIMAGE, 2001, 14 (06) :1444-1453
[14]   Direct demonstration of interhemispheric inhibition of the human motor cortex produced by transcranial magnetic stimulation [J].
Di Lazzaro, V ;
Oliviero, A ;
Profice, P ;
Insola, A ;
Mazzone, P ;
Tonali, P ;
Rothwell, JC .
EXPERIMENTAL BRAIN RESEARCH, 1999, 124 (04) :520-524
[15]   Frontal lobe inputs to the digit representations of the motor areas on the lateral surface of the hemisphere [J].
Dum, RP ;
Strick, PL .
JOURNAL OF NEUROSCIENCE, 2005, 25 (06) :1375-1386
[16]   INTERHEMISPHERIC INHIBITION OF THE HUMAN MOTOR CORTEX [J].
FERBERT, A ;
PRIORI, A ;
ROTHWELL, JC ;
DAY, BL ;
COLEBATCH, JG ;
MARSDEN, CD .
JOURNAL OF PHYSIOLOGY-LONDON, 1992, 453 :525-546
[17]   Multiple nonprimary motor areas in the human cortex [J].
Fink, GR ;
Frackowiak, RSJ ;
Pietrzyk, U ;
Passingham, RE .
JOURNAL OF NEUROPHYSIOLOGY, 1997, 77 (04) :2164-2174
[18]   Cerebral changes during performance of overlearned arbitrary visuomotor associations [J].
Grol, MJ ;
de Lange, FP ;
Verstraten, FAJ ;
Passingham, RE ;
Toni, I .
JOURNAL OF NEUROSCIENCE, 2006, 26 (01) :117-125
[19]  
HOLM S, 1979, SCAND J STAT, V6, P65
[20]   A global optimisation method for robust affine registration of brain images [J].
Jenkinson, M ;
Smith, S .
MEDICAL IMAGE ANALYSIS, 2001, 5 (02) :143-156