Gaussian processes and martingales for fuzzy valued random variables with continuous parameter

被引:17
作者
Li, SM
Ogura, Y
Nguyen, HT
机构
[1] Beijing Polytech Univ, Dept Math Appl, Beijing 100022, Peoples R China
[2] Saga Univ, Dept Math, Saga 840, Japan
[3] New Mexico State Univ, Dept Math Sci, Las Cruces, NM 88003 USA
关键词
D O I
10.1016/S0020-0255(01)00074-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The purpose of this paper is to discuss fuzzy valued Gaussian processes and martingales with continuous parameter. We mainly obtain a representation theorem for fuzzy valued Gaussian processes after proving a new embedding theorem. Based on previous results about set valued and fuzzy valued martingales (cf. [S. Li, Y. Ogura, J. Fuzzy Math. 4 (1996) 905; S. Li, Y. Ogura, Fuzzy Sets and Systems 101 (1999) 453; S. Li, Y. Ogura, Am. Probab. 26 (1998) 1384-1402; S; Li, Y. Ogura, in: Proc. IFSA '97, vol. 4, 1997, pp. 9-13; S. Li, Y. Ogura, in: C. Bertoluzza, M,A. Gil, D.A. Ralescu (Eds.), Statistical Modeling, Analysis and Management of Fuzzy Data, Physica tin press); Y. Ogura, S. Li, Fuzzy Sets and Systems (in press)]), we prove optional sampling theorems for set valued and fuzzy valued martingales with continuous parameter. (C) 2001 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:7 / 21
页数:15
相关论文
共 23 条
[1]  
ALO RA, 1979, J REINE ANGEW MATH, V310, P1
[2]   A generalized strong law of large numbers [J].
Colubi, A ;
López-Díaz, M ;
Domínguez-Menchero, JS ;
Gil, MA .
PROBABILITY THEORY AND RELATED FIELDS, 1999, 114 (03) :401-417
[3]   ON MULTIVALUED MARTINGALES WHOSE VALUES MAY BE UNBOUNDED - MARTINGALE SELECTORS AND MOSCO CONVERGENCE [J].
HESS, C .
JOURNAL OF MULTIVARIATE ANALYSIS, 1991, 39 (01) :175-201
[4]   INTEGRALS, CONDITIONAL EXPECTATIONS, AND MARTINGALES OF MULTIVALUED FUNCTIONS [J].
HIAI, F ;
UMEGAKI, H .
JOURNAL OF MULTIVARIATE ANALYSIS, 1977, 7 (01) :149-182
[5]  
Karatzas I, 2014, Brownian Motion and Stochastics Calculus, V113
[6]   Stochastic integrals of set-valued processes and fuzzy processes [J].
Kim, BK ;
Kim, JH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 236 (02) :480-502
[7]  
Klein E., 1984, THEORY CORRES INCLUD
[8]   LIMIT-THEOREMS FOR FUZZY RANDOM-VARIABLES [J].
KLEMENT, EP ;
PURI, ML ;
RALESCU, DA .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1986, 407 (1832) :171-182
[9]  
LI S, 1996, J FUZZY MATH, V4, P905
[10]  
LI S, 1997, P IFSA 97, V4, P9