Homogenization of a Hamilton-Jacobi equation associated with the geometric motion of an interface

被引:11
作者
Craciun, B
Bhattacharya, K
机构
[1] Synopsys, Mountain View, CA 94043 USA
[2] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA
关键词
D O I
10.1017/S0308210500002675
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the overall evolution of fronts propagating with a normal velocity that depends on position, v(n) = f(x), where f is rapidly oscillating and periodic. A level-set formulation is used to rewrite this problem as the periodic homogenization of a Hamilton-Jacobi equation. The paper presents a series of variational characterization (formulae) of the effective Hamiltonian or effective normal velocity. It also examines the situation when f changes sign.
引用
收藏
页码:773 / 805
页数:33
相关论文
共 13 条
[1]  
ACERBI E, 1984, J ANAL MATH, V43, P183
[2]   FRONT PROPAGATION AND PHASE FIELD-THEORY [J].
BARLES, G ;
SONER, HM ;
SOUGANIDIS, PE .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (02) :439-469
[3]  
Bensoussan A., 1978, ASYMPTOTIC ANAL PERI
[4]   Phase boundary propagation in a heterogeneous body [J].
Bhattacharya, K .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 455 (1982) :757-766
[5]  
Concordel MC, 1996, INDIANA U MATH J, V45, P1095
[6]   Periodic homogenisation of Hamilton-Jacobi equations .2. Eikonal equations [J].
Concordel, MC .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1997, 127 :665-689
[7]  
CRACIUN B, UNPUB EFFECT PRECIPI
[8]  
CRACIUN B, EFFECTIVE MOTION CUR
[10]  
Lions P.-L., 1987, HOMOGENIZATION HAMIL