Free-surface microfluidic control of surface-enhanced Raman spectroscopy for the optimized detection of airborne molecules

被引:138
作者
Piorek, Brian D.
Lee, Seung Joon
Santiago, Juan G.
Moskovits, Martin
Banerjee, Sanjoy
Meinhart, Carl D. [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA
[3] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA
[4] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
关键词
chemical detection; nanoparticle aggregation;
D O I
10.1073/pnas.0708596104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a microfluidic technique for sensitive, real-time, optimized detection of airborne water-soluble molecules by surface-enhanced Raman spectroscopy (SERS). The method is based on a free-surface fluidic device in which a pressure-driven liquid microchannel flow is constrained by surface tension. A colloidal suspension of silver nanoparticles flowing through the microchannel that is open to the atmosphere absorbs gas-phase 4-aminobenzenethiol (4-ABT) from the surrounding environment. As surface ions adsorbed on the colloid nanoparticles are substituted by 4-ABT, the colloid aggregates, forming SERS "hot spots" whose concentrations vary predictably along the microchannel flow. 4-ABT confined in these hot spots produces SERS spectra of very great intensity. An aggregation model is used to account quantitatively for the extent of colloid aggregation as determined from the variation of the SERS intensity measured as a function of the streamwise position along the microchannel, which also corresponds to nanoparticle exposure time. This allows us to monitor simultaneously the nanoparticle aggregation process and to determine the location at which the SERS signal is optimized.
引用
收藏
页码:18898 / 18901
页数:4
相关论文
共 22 条
[1]   Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection [J].
Cao, YWC ;
Jin, RC ;
Mirkin, CA .
SCIENCE, 2002, 297 (5586) :1536-1540
[2]   Decomposition of triacetone triperoxide is an entropic explosion [J].
Dubnikova, F ;
Kosloff, R ;
Almog, J ;
Zeiri, Y ;
Boese, R ;
Itzhaky, H ;
Alt, A ;
Keinan, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (04) :1146-1159
[3]   RAMAN-SPECTRA OF PYRIDINE ADSORBED AT A SILVER ELECTRODE [J].
FLEISCHMANN, M ;
HENDRA, PJ ;
MCQUILLAN, AJ .
CHEMICAL PHYSICS LETTERS, 1974, 26 (02) :163-166
[4]   Femtomolar detection of prostate-specific antigen: An immunoassay based on surface-enhanced Raman scattering and immunogold labels [J].
Grubisha, DS ;
Lipert, RJ ;
Park, HY ;
Driskell, J ;
Porter, MD .
ANALYTICAL CHEMISTRY, 2003, 75 (21) :5936-5943
[5]   Marker-specific sorting of rare cells using dielectrophoresis [J].
Hu, XY ;
Bessette, PH ;
Qian, JR ;
Meinhart, CD ;
Daugherty, PS ;
Soh, HT .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (44) :15757-15761
[6]   SURFACE RAMAN SPECTROELECTROCHEMISTRY .1. HETEROCYCLIC, AROMATIC, AND ALIPHATIC-AMINES ADSORBED ON ANODIZED SILVER ELECTRODE [J].
JEANMAIRE, DL ;
VANDUYNE, RP .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1977, 84 (01) :1-20
[7]   DIFFUSION LIMITED AGGREGATION WITH DIRECTED AND ANISOTROPIC DIFFUSION [J].
JULLIEN, R ;
KOLB, M ;
BOTET, R .
JOURNAL DE PHYSIQUE, 1984, 45 (03) :395-399
[8]   Single molecule detection using surface-enhanced Raman scattering (SERS) [J].
Kneipp, K ;
Wang, Y ;
Kneipp, H ;
Perelman, LT ;
Itzkan, I ;
Dasari, R ;
Feld, MS .
PHYSICAL REVIEW LETTERS, 1997, 78 (09) :1667-1670
[9]   MINIATURIZED TOTAL CHEMICAL-ANALYSIS SYSTEMS - A NOVEL CONCEPT FOR CHEMICAL SENSING [J].
MANZ, A ;
GRABER, N ;
WIDMER, HM .
SENSORS AND ACTUATORS B-CHEMICAL, 1990, 1 (1-6) :244-248
[10]   PIV measurements of a microchannel flow [J].
Meinhart, CD ;
Wereley, ST ;
Santiago, JG .
EXPERIMENTS IN FLUIDS, 1999, 27 (05) :414-419