Minimization of a large-scale quadratic function: Subject to a spherical constraint

被引:95
作者
Sorensen, DC
机构
[1] Dept. of Computational Mathematics, Rice University, Houston
关键词
Krylov methods; regularization; constrained quadratic optimization; trust-region; Lanczos method;
D O I
10.1137/S1052623494274374
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An important problem in linear algebra and optimization is the trust-region subproblem: minimize a quadratic function subject to an ellipsoidal or spherical constraint. This basic problem has several important large-scale applications including seismic inversion and forcing convergence in optimization methods. Existing methods to solve the trust-region subproblem require matrix factorizations, which are not feasible in the large-scale setting. This paper presents an algorithm for solving the large-scale trust-region subproblem that requires a fixed-size limited storage proportional to the order of the quadratic and that relies only on matrix-vector products. The algorithm recasts the trust-region subproblem in terms of a parameterized eigenvalue problem and adjusts the parameter with a superlinearly convergent iteration to find the optimal solution from the eigenvector of the parameterized problem. Only the smallest eigenvalue and corresponding eigenvector of the parameterized problem needs to be computed. The implicitly restarted Lanczos method is well suited to this subproblem.
引用
收藏
页码:141 / 161
页数:21
相关论文
共 18 条
  • [1] A TRUST REGION ALGORITHM FOR NONLINEARLY CONSTRAINED OPTIMIZATION
    BYRD, RH
    SCHNABEL, RB
    SHULTZ, GA
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (05) : 1152 - 1170
  • [2] Celis MR, 1984, NUMERICAL OPTIMIZATI, P71
  • [3] ESTIMATE FOR THE CONDITION NUMBER OF A MATRIX
    CLINE, AK
    MOLER, CB
    STEWART, GW
    WILKINSON, JH
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (02) : 368 - 375
  • [4] A GLOBAL CONVERGENCE THEORY FOR THE CELIS-DENNIS-TAPIA TRUST-REGION ALGORITHM FOR CONSTRAINED OPTIMIZATION
    ELALEM, M
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (01) : 266 - 290
  • [5] GANDER W, 1981, NUMER MATH, V36, P291, DOI 10.1007/BF01396656
  • [6] QUADRATICALLY CONSTRAINED LEAST-SQUARES AND QUADRATIC PROBLEMS
    GOLUB, GH
    VONMATT, U
    [J]. NUMERISCHE MATHEMATIK, 1991, 59 (06) : 561 - 580
  • [7] LEHOUCQ R, ARPACK IMPLEMENTATIO
  • [8] Menke W, 1989, GEOPHYSICAL DATA ANA
  • [9] More J. J., 1983, RECENT DEV ALGORITHM, P258
  • [10] COMPUTING A TRUST REGION STEP
    MORE, JJ
    SORENSEN, DC
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1983, 4 (03): : 553 - 572