A multifunctional iridium-carbazolyl orange phosphor for high-performance two-element WOLED exploiting Exciton-Managed fluorescence/phosphorescence

被引:273
作者
Ho, Cheuk-Lam [1 ,2 ]
Wong, Wai-Yeung [1 ,2 ]
Wang, Qi [3 ]
Ma, Dongge [3 ]
Wang, Lixiang [3 ]
Lin, Zhenyang
机构
[1] Hong Kong Baptist Univ, Dept Chem, Kowloon Tong, Hong Kong, Peoples R China
[2] Hong Kong Baptist Univ, Ctr Adv Luminescence Mat, Kowloon Tong, Hong Kong, Peoples R China
[3] Chinese Acad Sci, Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China
关键词
D O I
10.1002/adfm.200701115
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
By attaching a bulky, inductively electron-with drawing trifluoromethyl (CF3) group on the pyridyl ring of the rigid 2-[3(N-phenylcarbazolyl)]pyridine cyclometalated ligand, we successfully synthesized a new heteroleptic orange-emitting phosphorescent iridium(III) complex [Ir(L-1)(2)(acac)] 1 (HL1=5-trifluoromethyl-2-[3-(N-phenylcarbazolyl)]pyridine, Hacac = acetylacetone) in good yield. The structural and electronic properties of 1 were examined by X-ray crystallography and time-dependent DFT calculations. The influence of CF3 substituents on the optical, electrochemical and electroluminescence (EL) properties of I were studied. We note that incorporation of the carbazolyl unit facilitates the hole-transporting ability of the complex, and more importantly, attachment of CF3 group provides an access to a highly efficient electrophosphor for the fabrication of orange phosphorescent organic light-emitting diodes (OLEDs) with outstanding device performance. These orange OLEDs can produce a maximum current efficiency of similar to 40 cd A(-1), corresponding to an external quantum efficiency of similar to 12% ph/el (photons per electron) and a power efficiency of similar to 24 lm W-1. Remarkably, high-performance simple two-element white OLEDs (WOLEDs) with excellent color stability can be fabricated using an orange triplet-harvesting emitter I in conjunction with a blue singlet-harvesting emitter. By using such a new system where the host singlet is resonant with the blue fluorophore singlet state and the host triplet is resonant with the orange phosphor triplet level, this white light-emitting structure can achieve peak EL efficiencies of 26.6 cd A(-1) and 13.5 lm W-1 that are generally superior to other two-element all-fluorophore or all-phosphor OLED counterparts in terms of both color stability and emission efficiency.
引用
收藏
页码:928 / 937
页数:10
相关论文
共 86 条
[1]   Nearly 100% internal phosphorescence efficiency in an organic light-emitting device [J].
Adachi, C ;
Baldo, MA ;
Thompson, ME ;
Forrest, SR .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (10) :5048-5051
[2]   White polymeric light-emitting diode based on a fluorene polymer/Ir complex blend system [J].
Al Attar, HA ;
Monkman, AP ;
Tavasli, M ;
Bettington, S ;
Bryce, MR .
APPLIED PHYSICS LETTERS, 2005, 86 (12) :1-3
[3]   Thienopyrazine-based low-bandgap poly(heteroaryleneethynylene)s for photovoltaic devices [J].
Ashraf, Raja Shahid ;
Shahid, Munazza ;
Klemm, Elisabeth ;
Al-Ibrahim, Maher ;
Sensfuss, Steffi .
MACROMOLECULAR RAPID COMMUNICATIONS, 2006, 27 (17) :1454-1459
[4]   Phosphorescent materials for application to organic light emitting devices [J].
Baldo, MA ;
Thompson, ME ;
Forrest, SR .
PURE AND APPLIED CHEMISTRY, 1999, 71 (11) :2095-2106
[5]   New air-stable n-channel organic thin film transistors [J].
Bao, ZA ;
Lovinger, AJ ;
Brown, J .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (01) :207-208
[6]   Tris-cyclometalated iridium(III) complexes of carbazole(fluorenyl)pyridine ligands: Synthesis, redox and photophysical properties, and electrophosphoreseent light-emitting diodes [J].
Bettington, Sylvia ;
Tavasli, Mustafa ;
Bryce, Martin R. ;
Beeby, Andrew ;
Al-Attar, Hameed ;
Monkman, Andrew P. .
CHEMISTRY-A EUROPEAN JOURNAL, 2007, 13 (05) :1423-1431
[7]  
*BRUK AN XR SYST I, 1998, SAINT VER 6 02A
[8]   Carbazole compounds as host materials for triplet emitters in organic light-emitting diodes:: Tuning the HOMO level without influencing the triplet energy in small molecules [J].
Brunner, K ;
van Dijken, A ;
Börner, H ;
Bastiaansen, JJAM ;
Kiggen, NMM ;
Langeveld, BMW .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (19) :6035-6042
[9]   The development of light-emitting dendrimers for displays [J].
Burn, Paul L. ;
Lo, Shih-Chun ;
Samuel, Ifor D. W. .
ADVANCED MATERIALS, 2007, 19 (13) :1675-1688
[10]   Evolution of red organic light-emitting diodes: Materials and devices [J].
Chen, CT .
CHEMISTRY OF MATERIALS, 2004, 16 (23) :4389-4400