Bis(glutathionyl) spermine and other novel trypanothione analogues in Trypanosoma cruzi

被引:48
作者
Ariyanayagam, MR [1 ]
Oza, SL [1 ]
Mehlert, A [1 ]
Fairlamb, AH [1 ]
机构
[1] Univ Dundee, Wellcome Trust Bioctr, Sch Life Sci, Div Biol Chem & Mol Microbiol, Dundee DD1 5EH, Scotland
关键词
D O I
10.1074/jbc.M302750200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Trypanosomatids differ from other cells in their ability to conjugate glutathione with the polyamine spermidine to form the antioxidant metabolite trypanothione (N-1, N-8-bis(glutathionyl) spermidine). In Trypanosoma cruzi, trypanothione is synthesized by an unusual trypanothione synthetase/amidase (TcTryS) that forms both glutathionylspermidine and trypanothione. Because T. cruzi is unable to synthesize putrescine and is dependent on uptake of exogenous polyamines by high affinity transporters, synthesis of trypanothione may be circumstantially limited by lack of spermidine. Here, we show that the parasite is able to circumvent the potential shortage of spermidine by conjugating glutathione with other physiological polyamine substrates from exogenous sources (spermine, N-8-acetylspermidine, and N-acetylspermine). Novel thiols were purified from epimastigotes, and structures were determined by matrix-assisted laser desorption ionization time-of-flight analysis to be N-1, N-12-bis(glutathionyl)spermine, N-1-glutathionyl-N-8-acetylspermidine, and N-1-glutathionyl-N-12-acetylspermine, respectively. Structures were confirmed by enzymatic synthesis with recombinant TcTryS, which catalyzes formation of these compounds with kinetic parameters equivalent to or better than those of spermidine. Despite containing similar amounts of spermine and spermidine, the epimastigotes, trypomastigotes, and amastigotes of T. cruzi preferentially synthesized trypanothione. Bis(glutathionyl) spermine disulfide is a physiological substrate of recombinant trypanothione reductase, comparable to trypanothione and homotrypanothione disulfides. The broad substrate specificity of TcTryS could be exploited in the design of polyamine-based inhibitors of trypanothione metabolism.
引用
收藏
页码:27612 / 27619
页数:8
相关论文
共 53 条
[1]   Diamine auxotrophy may be a universal feature of Trypanosoma cruzi epimastigotes [J].
Ariyanayagam, MR ;
Fairlamb, AH .
MOLECULAR AND BIOCHEMICAL PARASITOLOGY, 1997, 84 (01) :111-121
[2]   Ovothiol and trypanothione as antioxidants in trypanosomatids [J].
Ariyanayagam, MR ;
Fairlamb, AH .
MOLECULAR AND BIOCHEMICAL PARASITOLOGY, 2001, 115 (02) :189-198
[3]   Entamoeba histolytica lacks trypanothione metabolism [J].
Ariyanayagam, MR ;
Fairlamb, AH .
MOLECULAR AND BIOCHEMICAL PARASITOLOGY, 1999, 103 (01) :61-69
[4]   Trypanothione as a target in the design of antitrypanosomal and antileishmanial agents [J].
Augustyns, K ;
Amssoms, K ;
Yamani, A ;
Rajan, PK ;
Haemers, A .
CURRENT PHARMACEUTICAL DESIGN, 2001, 7 (12) :1117-1141
[5]   GLUTATHIONYLSPERMIDINE METABOLISM IN ESCHERICHIA-COLI - PURIFICATION, CLONING, OVERPRODUCTION, AND CHARACTERIZATION OF A BIFUNCTIONAL GLUTATHIONYLSPERMIDINE SYNTHETASE/AMIDASE [J].
BOLLINGER, JM ;
KWON, DS ;
HUISMAN, GW ;
KOLTER, R ;
WALSH, CT .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (23) :14031-14041
[6]   Crystal structure of Trypanosoma cruzi trypanothione reductase in complex with trypanothione, and the structure-based discovery of new natural product inhibitors [J].
Bond, CS ;
Zhang, YH ;
Berriman, M ;
Cunningham, ML ;
Fairlamb, AH ;
Hunter, WN .
STRUCTURE, 1999, 7 (01) :81-89
[7]  
BORGES A, 1995, EUR J BIOCHEM, V228, P745, DOI 10.1111/j.1432-1033.1995.tb20319.x
[8]   Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress [J].
Carmel-Harel, O ;
Storz, G .
ANNUAL REVIEW OF MICROBIOLOGY, 2000, 54 :439-461
[9]   SPERMIDINE SPERMINE N1-ACETYLTRANSFERASE - THE TURNING-POINT IN POLYAMINE METABOLISM [J].
CASERO, RA ;
PEGG, AE .
FASEB JOURNAL, 1993, 7 (08) :653-661
[10]   Trypanothione-dependent synthesis of deoxyribonucleotides by Trypanosoma brucei ribonucleotide reductase [J].
Dormeyer, M ;
Reckenfelderbäumer, N ;
Lüdemann, H ;
Krauth-Siegel, RL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (14) :10602-10606