A fuzzy controller for maximum energy extraction from variable speed wind power generation systems

被引:90
作者
Calderaro, V. [1 ]
Galdi, V. [1 ]
Piccolo, A. [1 ]
Siano, P. [1 ]
机构
[1] Univ Salerno, Dept Informat & Elect Engn DIIIE, I-84084 Salerno, Italy
关键词
wind turbine; fuzzy control; doubly fed induction generator; variable speed wind turbines;
D O I
10.1016/j.epsr.2007.09.004
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The wind power production spreading, also aided by the transition from constant to variable speed operation, involves the development of efficient control systems to improve the effectiveness of wind systems. This paper presents a data-driven design methodology able to generate a Takagi-Sugeno-Kang (TSK) fuzzy model for maximum energy extraction from variable speed wind turbines. In order to obtain the TSK model, fuzzy clustering methods for partitioning the input-output space, combined with genetic algorithms (GA), and recursive least-squares (LS) optimization methods for model parameter adaptation are used. The implemented TSK fuzzy model, as confirmed by some simulation results on a doubly fed induction generator connected to a power system, exhibits high speed of computation, low memory occupancy, fault tolerance and learning capability. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1109 / 1118
页数:10
相关论文
共 18 条
[1]  
[Anonymous], 44 AIAA AER SCI M EX
[2]  
[Anonymous], Pattern Recognition With Fuzzy Objective Function Algorithms
[3]   Performance optimization for doubly fed wind power generation systems [J].
Bhowmik, S ;
Spée, R ;
Enslin, JHR .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 1999, 35 (04) :949-958
[4]  
BOUKHEZZARA B, 2006, MULTIVARIABLE CONTRO
[5]   Experimental evaluation of wind turbines maximum power point tracking controllers [J].
Camblong, H. ;
de Alegria, I. Martinez ;
Rodriguez, M. ;
Abad, G. .
ENERGY CONVERSION AND MANAGEMENT, 2006, 47 (18-19) :2846-2858
[6]  
CHIU SL, 1994, PROCEEDINGS OF THE THIRD IEEE CONFERENCE ON FUZZY SYSTEMS - IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE, VOLS I-III, P1240, DOI 10.1109/FUZZY.1994.343644
[7]   A fuzzy clustering-based rapid prototyping for fuzzy rule-based modeling [J].
Delgado, M ;
GomezSkarmeta, AF ;
Martin, F .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1997, 5 (02) :223-233
[8]  
Hatanaka T, 2002, PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOL 1 & 2, P69, DOI 10.1109/FUZZ.2002.1004962
[9]  
Jang J.-S.R., 1997, NEUROFUZZY SOFT COMP
[10]   ANFIS - ADAPTIVE-NETWORK-BASED FUZZY INFERENCE SYSTEM [J].
JANG, JSR .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1993, 23 (03) :665-685