The lectin chaperone calnexin utilizes polypeptide-based interactions to associate with many of its substrates in vivo

被引:82
作者
Danilczyk, UG
Williams, DB
机构
[1] Univ Toronto, Dept Biochem, Toronto, ON M5S 1A8, Canada
[2] Univ Toronto, Dept Immunol, Toronto, ON M5S 1A8, Canada
关键词
D O I
10.1074/jbc.M100270200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Calnexin and calreticulin are molecular chaperones of the endoplasmic reticulum that bind to newly synthesized glycoproteins in part through a lectin site specific for monoglucosylated (Glc(1)Man(7-9)GlcNAc(2)) oligosaccharides. In addition to this lectin-oligosaccharide interaction, in vitro studies have demonstrated that calnexin and calreticulin can bind to polypeptide segments of both glycosylated and nonglycosylated proteins. However, the in vivo relevance of this latter interaction has been questioned. We examined whether polypeptide-based interactions occur between calnexin and its substrates in vivo using the glucosidase inhibitor castanospermine or glucosidase-deficient cells to prevent the formation of monoglucosylated oligosaccharides. We show that if care is taken to preserve weak interactions, the block in lectin-oligosaccharide binding leads to the loss of some calnexin-substrate complexes, but many others remain readily detectable. Furthermore, we demonstrate that calnexin is capable of associating in vivo with a substrate that completely lacks Asn-linked oligosaccharides. The binding of calnexin to proteins that lack monoglucosylated oligosaccharides could not be attributed to nonspecific adsorption nor to its inclusion in protein aggregates. We conclude that both lectin-oligosaccharide and polypeptide-based interactions occur between calnexin and diverse proteins in vivo and that the strength of the latter interaction varies substantially between protein substrates.
引用
收藏
页码:25532 / 25540
页数:9
相关论文
共 60 条