Free diffusions, free entropy and free Fisher information

被引:63
作者
Biane, P
Speicher, R
机构
[1] Ecole Normale Super, DMA, CNRS, F-75005 Paris, France
[2] Queens Univ, Dept Math & Stat, Kingston, ON K7L 3N6, Canada
[3] IHP, Paris, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2001年 / 37卷 / 05期
关键词
D O I
10.1016/S0246-0203(00)01074-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Motivated by the stochastic quantization approach to large N matrix models, we study solutions to free stochastic differential equations dX(t) = dS(t) - 1/2 f (X-t) dt where S-t is a free brownian motion. We show existence, uniqueness and Markov property of solutions. We define a relative free entropy as well as a relative free Fisher information, and show that these quantities behave as in the classical case. Finally we show that, in contrast with classical diffusions, in general the asymptotic distribution of the free diffusion does not converge, as t --> infinity, towards the master field (i.e., the Gibbs state). (C) 2001 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:581 / 606
页数:26
相关论文
共 22 条
[1]  
Biane P, 1997, INDIANA U MATH J, V46, P705
[2]   Stochastic calculus with respect to free Brownian motion and analysis on Wigner space [J].
Biane, P ;
Speicher, R .
PROBABILITY THEORY AND RELATED FIELDS, 1998, 112 (03) :373-409
[3]   Processes with free increments [J].
Biane, P .
MATHEMATISCHE ZEITSCHRIFT, 1998, 227 (01) :143-174
[4]  
Biane P., 1997, Free Probability Theory, V12, P1
[5]  
BIANE P, 1998, 40 MSRI
[6]   Managed care and (Un)informed consent [J].
Dougherty, CJ .
JOURNAL OF HEAD TRAUMA REHABILITATION, 1997, 12 (01) :21-28
[7]   STOCHASTIC MASTER FIELDS [J].
DOUGLAS, MR .
PHYSICS LETTERS B, 1995, 344 (1-4) :117-126
[8]   A BROWNIAN-MOTION FOR EIGENVALUES OF A RANDOM MATRIX [J].
DYSON, FJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1962, 3 (06) :1191-+
[9]  
Freidlin M.I., 1998, GRUNDLEHREN MATH WIS, V260
[10]  
FUKUSHIMA M., 1994, DEGRUYTER STUDIES MA, V19