Free diffusions, free entropy and free Fisher information

被引:63
作者
Biane, P
Speicher, R
机构
[1] Ecole Normale Super, DMA, CNRS, F-75005 Paris, France
[2] Queens Univ, Dept Math & Stat, Kingston, ON K7L 3N6, Canada
[3] IHP, Paris, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2001年 / 37卷 / 05期
关键词
D O I
10.1016/S0246-0203(00)01074-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Motivated by the stochastic quantization approach to large N matrix models, we study solutions to free stochastic differential equations dX(t) = dS(t) - 1/2 f (X-t) dt where S-t is a free brownian motion. We show existence, uniqueness and Markov property of solutions. We define a relative free entropy as well as a relative free Fisher information, and show that these quantities behave as in the classical case. Finally we show that, in contrast with classical diffusions, in general the asymptotic distribution of the free diffusion does not converge, as t --> infinity, towards the master field (i.e., the Gibbs state). (C) 2001 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:581 / 606
页数:26
相关论文
共 22 条
[11]   MASTERING THE MASTER FIELD [J].
GOPAKUMAR, R ;
GROSS, DJ .
NUCLEAR PHYSICS B, 1995, 451 (1-2) :379-415
[12]  
GREENSITE J, 1988, NUCL PHYS, V211, P343
[13]   HANKEL-OPERATORS IN THE PERTURBATION-THEORY OF UNITARY AND SELF-ADJOINT OPERATORS [J].
PELLER, VV .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1985, 19 (02) :111-123
[14]  
Saff E. B., 1997, GRUNDLEHREN MATH WIS, V316
[15]  
Speicher R., 1998, MEM AM MATH SOC, V627
[16]  
Stroock D. W., 1993, Lecture Notes in Mathematics, P194
[17]   The analogues of entropy and of Fisher's information measure in free probability theory - V. Noncommutative Hilbert transforms [J].
Voiculescu, D .
INVENTIONES MATHEMATICAE, 1998, 132 (01) :189-227
[18]   THE ANALOGS OF ENTROPY AND OF FISHER INFORMATION MEASURE IN FREE PROBABILITY-THEORY .1. [J].
VOICULESCU, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 155 (01) :71-92
[19]   LIMIT LAWS FOR RANDOM MATRICES AND FREE-PRODUCTS [J].
VOICULESCU, D .
INVENTIONES MATHEMATICAE, 1991, 104 (01) :201-220
[20]  
Voiculescu D., 1992, CRM MONOGRAPH SERIES, V1