Cellular levels and activity of the flagellar sigma factor FliA of Escherichia coli are controlled by FIgM-modulated proteolysis

被引:67
作者
Barembruch, Claudia [1 ]
Hengge, Regine [1 ]
机构
[1] Free Univ Berlin, Inst Biol Mikrobiol, D-14195 Berlin, Germany
关键词
D O I
10.1111/j.1365-2958.2007.05770.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In Escherichia coli the flagellar regulon consists of more than 60 genes organized in three hierarchically and temporally regulated transcriptional classes. The flagellar sigma factor FIiA (all) is responsible for class 3 expression and, in the early phase of flagellar assembly, is inhibited by its anti-sigma factor FlgM. The flagellar hook basal body forms a type III secretion system capable of secreting both flagellar subunits and FlgM. This results in release and therefore activation of FliA and class 3 expression. Here we demonstrate that FliA is also subject to proteolysis which mainly depends on Lon protease. FlgM not only acts as an anti-sigma factor but also protects FliA from being degraded. Based on quantitative measurements over time upon experimental induction of the flagellar cascade as well as during the growth cycle of a motile strain, we show that FliA proteolysis increases in parallel to class 3 expression, i.e. correlates with FlgM secretion and the phase of highest activity of FliA. Thus, when FIgM is not available due to secretion or mutation, and with RNA polymerase interaction being only transient during the transcription initiation cycle, the proteases can degrade FIiA. Experiments with a Ion mutant indicate that Lon protease and FliA degradation maintain appropriate FliA : FIgM stoichiometry upon induction of the flagellar system and thereby contribute to timely shut-off of this system.
引用
收藏
页码:76 / 89
页数:14
相关论文
共 43 条
[1]   The flagellar-specific transcription factor, σ28, is the Type III secretion chaperone for the flagellar-specific anti-σ28 factor FlgM [J].
Aldridge, Phillip D. ;
Karlinsey, Joyce E. ;
Aldridge, Christine ;
Birchall, Christopher ;
Thompson, Danielle ;
Yagasaki, Jin ;
Hughes, Kelly T. .
GENES & DEVELOPMENT, 2006, 20 (16) :2315-2326
[2]   The response regulator RssB, a recognition factor for σs proteolysis in Escherichia coli, can act like an anti-σs factor [J].
Becker, G ;
Klauck, E ;
Hengge-Aronis, R .
MOLECULAR MICROBIOLOGY, 2000, 35 (03) :657-666
[3]   Regulation of RpoS proteolysis in Escherichia coli:: The response regulator RssB is a recognition factor that interacts with the turnover element in RpoS [J].
Becker, G ;
Klauck, E ;
Hengge-Aronis, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (11) :6439-6444
[4]   TRANSPOSITION AND FUSION OF LAC GENES TO SELECTED PROMOTERS IN ESCHERICHIA-COLI USING BACTERIOPHAGE-LAMBDA AND BACTERIOPHAGE-MU [J].
CASADABAN, MJ .
JOURNAL OF MOLECULAR BIOLOGY, 1976, 104 (03) :541-555
[5]  
Chadderdon L M, 2001, J Vet Med Educ, V28, P28, DOI 10.3138/jvme.28.1.28
[6]   The flagellar anti-σ factor FlgM actively dissociates Salmonella typhimurium σ28 RNA polymerase holoenzyme [J].
Chadsey, MS ;
Karlinsey, JE ;
Hughes, KT .
GENES & DEVELOPMENT, 1998, 12 (19) :3123-3136
[7]   CONSTRUCTION AND CHARACTERIZATION OF AMPLIFIABLE MULTICOPY DNA CLONING VEHICLES DERIVED FROM P15A CRYPTIC MINIPLASMID [J].
CHANG, ACY ;
COHEN, SN .
JOURNAL OF BACTERIOLOGY, 1978, 134 (03) :1141-1156
[8]   Coupling of flagellar gene expression to flagellar assembly in salmonella enterica serovar typhimurium and Escherichia coli [J].
Chilcott, GS ;
Hughes, KT .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2000, 64 (04) :694-+
[9]   One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products [J].
Datsenko, KA ;
Wanner, BL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) :6640-6645
[10]  
GOTTESMAN S, 1993, J BIOL CHEM, V268, P22618