Principal-value integrals - Revisited

被引:7
作者
Cohen, SM [1 ]
Davies, KTR
Davies, RW
Lee, MH
机构
[1] Duquesne Univ, Dept Phys, Pittsburgh, PA 15282 USA
[2] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA
关键词
D O I
10.1139/P05-025
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The principal-value (PV) integral has proved a useful tool in many fields of physics. The PV is a specific method for obtaining a finite result for an improper integral. When the integration passes through a simple pole, one speaks of a "first-order" PV. In this paper, we examine first-order PV integrals and analyze several of their important properties. First, we discuss how the PV agrees with one's naive expectation about these integrals. Next, we show that the basic definition of the first-order PV gives a generalized formula for the complex-variable PV expression. Finally, we show the correspondence between the finite-limit PV integral of x(-1) along the real axis and the path integral of z(-1) (where z = x + iy) in the complex plane.
引用
收藏
页码:565 / 575
页数:11
相关论文
共 23 条
[11]  
DAVIS PJ, 1984, METHODS NUMERICAL IN, P11
[12]  
DWIGHT HB, 1963, TABLES INTEGRALS OTH, P21
[13]   NUCLEAR SATURATION AND SMOOTHNESS OF NUCLEON-NUCLEON POTENTIALS [J].
HAFTEL, MI ;
TABAKIN, F .
NUCLEAR PHYSICS A, 1970, A158 (01) :1-&
[14]   Solving certain principal value integrals by reduction to the dilogarithm [J].
Lee, MH .
PHYSICA A, 1996, 234 (1-2) :581-588
[15]  
MERZBACHER E, 1962, QUANTUM MECHANICS, P501
[16]  
MORSE PM, 1953, METHODS THEORETICA 1, P368
[17]   FINITE TOTAL 3-PARTICLE SCATTERING RATES [J].
NEWTON, RG ;
SHTOKHAMER, R .
PHYSICAL REVIEW A, 1976, 14 (02) :642-657
[18]   RELATIVISTIC TRANSPORT-THEORY OF FLUCTUATING FIELDS FOR HADRONS [J].
SIEMENS, PJ ;
SOYEUR, M ;
WHITE, GD ;
LANTTO, LJ ;
DAVIES, KTR .
PHYSICAL REVIEW C, 1989, 40 (06) :2641-2671
[19]   ON THE NUMERICAL EVALUATION OF TWO-DIMENSIONAL PRINCIPAL VALUE INTEGRALS [J].
THEOCARIS, PS ;
IOAKIMIDIS, NI ;
KAZANTZAKIS, JG .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1980, 15 (04) :629-634
[20]   METHOD OF NUMERICAL-SOLUTION OF CAUCHY-TYPE SINGULAR INTEGRAL-EQUATIONS WITH GENERALIZED KERNELS AND ARBITRARY COMPLEX SINGULARITIES [J].
THEOCARIS, PS ;
IOAKIMIDIS, NI .
JOURNAL OF COMPUTATIONAL PHYSICS, 1979, 30 (03) :309-323